Advertisement

Finite Element Analyses of Working Principle of the Ultrasonic Needle-Droplet-Substrate System for Multiple-Function Manipulation

  • Xiaomin Qi
  • Qiang Tang
  • Pengzhan Liu
  • Junhui HuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11741)

Abstract

Convenient and high-efficiency manipulation of nanoscale materials has huge potential applications in nano assembly and biomedical technology. We have reported an ultrasonic needle-droplet-substrate system to aggregate and then transport the nanoscale materials freely at the interface between the substrate and water droplet. In the manipulation method, the ultrasonic needle is inserted into the water droplet of nanoscale material to generate a controlled ultrasonic field for the manipulations. In this paper, we report the detailed method and results of FE (finite element) analyses for the investigation of working principle of the manipulation system. The FE analyses show that the ultrasonic needle can generate an acoustic streaming field around the ultrasonic needle to implement the nano aggregation and transportation. The computational results can well explain the experimental phenomena of multiple-function manipulation.

Keywords

Finite element Ultrasonic needle-droplet-substrate system Manipulation Multiple-function 

Notes

Acknowledgements

This work is supported by the following funding organization in China: the National Basic Research Program of China (973 Program, Grant No. 2015CB057501), State Key Lab of Mechanics and Control of Mechanical Structures (Grant No. MCMS-0318K01), and Higher Education Promotion Project of Anhui (Grant No. TSKJ2016B20).

References

  1. 1.
    Dash, S.P., Patnaik, S.K., Tripathy, S.K.: Investigation of a low cost tapered plastic fiber optic biosensor based on manipulation of colloidal gold nanoparticles. Opt. Commun. 437, 388–391 (2019)CrossRefGoogle Scholar
  2. 2.
    Rajput, N.S., Le Marrec, F., El Marssi, M., Jouiad, M.: Fabrication and manipulation of nanopillars using electron induced excitation. J. Appl. Phys. 124(7), 074301 (2019)CrossRefGoogle Scholar
  3. 3.
    Zhang, B., Meng, F.S., Feng, J.G., Wang, J.X., Wu, Y.C., Jiang, L.: Manipulation of colloidal particles in three dimensions via microfluid engineering. Adv. Mater. 30(22), 1707291 (2018)CrossRefGoogle Scholar
  4. 4.
    Agiotis, L., Theodorakos, I., Samothrakitis, S., Papazoglou, S., Zergioti, I., Raptis, Y.S.: Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applictions. J. Magn. Magn. Mater. 401, 956–964 (2016)CrossRefGoogle Scholar
  5. 5.
    Huang, C.Y., et al.: Magnetic micro/nano structures for biological manipulaition. Spin 6(1), 1650005 (2016)CrossRefGoogle Scholar
  6. 6.
    Han, S.I., Kim, H.S., Han, A.: In-droplet cell concentration using deelectrophoresis. Biosens. Bioelectron. 97, 41–45 (2017)CrossRefGoogle Scholar
  7. 7.
    Liu, L.B., Chen, K., Xiang, N., Ni, Z.H.: Dielectrophoretic manipulation of nanomaterials: a review. Electrophoresis 40(6), 873–889 (2019)CrossRefGoogle Scholar
  8. 8.
    Grier, D.G.: A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)CrossRefGoogle Scholar
  9. 9.
    Kumar, S., Wittenberg, N.J., Oh, S.H.: Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly. Anal. Chem. 85(2), 971–977 (2013)CrossRefGoogle Scholar
  10. 10.
    Mao, Z.M., et al.: Enriching nanoparticles via acoustofluidics. ACS Nano 11(1), 603–612 (2017)CrossRefGoogle Scholar
  11. 11.
    Li, N., Hu, J.H., Li, H.Q., Bhuyan, S., Zhou, Y.J.: Mobile acoustic streaming based trapping and 3-dimensional transfer of a single nanowire. Appl. Phys. Lett. 101(9), 093113 (2012)CrossRefGoogle Scholar
  12. 12.
    Hu, J.H.: Ultrasonic Micro/Nano Manipulations: Principles and Examples. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  13. 13.
    Zhou, Y.J., Hu, J.H., Bhuyan, S.: Manipulations of silver nanowires in a droplet on a low-frequency ultrasonic stage. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(3), 622–629 (2013)CrossRefGoogle Scholar
  14. 14.
    Tang, Q., Hu, J.H.: Analyses of acoustic streaming field in the probe-liquid-substrate system for nanotrapping. Microfluid. Nanofluid. 19(6), 195–1408 (2015)CrossRefGoogle Scholar
  15. 15.
    Tang, Q., Hu, J.H.: Diversity of acoustic streaming in a rectangular acoustofluidic field. Ultrasonics 58, 27–34 (2015)CrossRefGoogle Scholar
  16. 16.
    Lighthill, J.: Acoustic streaming. J. Sound Vib. 61(3), 391–418 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiaomin Qi
    • 1
    • 2
  • Qiang Tang
    • 3
  • Pengzhan Liu
    • 1
  • Junhui Hu
    • 1
    Email author
  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of Mechanical and Automotive EngineeringAnhui Polytechnic UniversityWuhuChina
  3. 3.Faculty of Mechanical and Material EngineeringHuaiyin Institute of TechnologyHuaianChina

Personalised recommendations