A Survey of Underwater Acoustic SLAM System

  • Min Jiang
  • Sanming SongEmail author
  • Yiping Li
  • Wenming Jin
  • Jian Liu
  • Xisheng Feng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11741)


Due to the unavailability of GPS signal, it is more urgent to develop the autonomous navigation capability for the underwater vehicles. In this paper, we summarize the development status of underwater SLAM (simultaneous localization and mapping) system. Different from the terrestrial or aerial SLAM that largely depends on the optical sensors, the underwater SLAM system mainly uses the acoustic sensors, i.e., sonars, to watch the environment. With respect to the general SLAM system, which is mainly composed of the front-end local data-association and the back-end global error adjustment, we briefly survey recent progress in sonar image registration and the loop closure detection. Furthermore, some heuristic problems are posed in the conclusion.


Data association Underwater SLAM Underwater vehicle 



The work is supported by the Strategic Priority Program of the Chinese Academy of Sciences (No. XDC03060105, No. XDA13030203), the State Key Laboratory of Robotics of China (No. 2017-Z010), the National Key Research and Development Program of China (No. 2016YFC0300801, No. 2016YFC0300604, No. 2016YFC0301601), the project of “R&D Center for Underwater Construction Robotics”, funded by the Ministry of Ocean and Fisheries (MOF) and Korea Institute of Marine Science & Technology Promotion (KIMST), Korea (No. PJT200539), the Public science and technology research funds projects of ocean (No. 201505017).


  1. 1.
    Aykin, M., Negahdaripour, S.: On feature extraction and region matching for forward scan sonar imaging. In: 2012 Oceans, pp. 1–9. IEEE (2012)Google Scholar
  2. 2.
    Barkby, S., Williams, S.B., Pizarro, O., Jakuba, M.V.: A featureless approach to efficient bathymetric SLAM using distributed particle mapping. J. Field Robot. 28(1), 19–39 (2011)CrossRefGoogle Scholar
  3. 3.
    Belcher, E., Hanot, W., Burch, J.: Dual-frequency identification sonar (DIDSON). In: Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No. 02EX556), pp. 187–192. IEEE (2002)Google Scholar
  4. 4.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)Google Scholar
  5. 5.
    Bingham, B., et al.: Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 27(6), 702–717 (2010)CrossRefGoogle Scholar
  6. 6.
    Bosse, M., Zlot, R.: Map matching and data association for large-scale two-dimensional laser scan-based SLAM. Int. J. Robot. Res. 27(6), 667–691 (2008)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Wang, S., Hu, H., Gu, D., Liao, L.: Improving localization accuracy for an underwater robot with a slow-sampling sonar through graph optimization. IEEE Sens. J. 15(9), 5024–5035 (2015)CrossRefGoogle Scholar
  8. 8.
    Elfes, A.: Sonar-based real-world mapping and navigation. IEEE J. Robot. Autom. 3(3), 249–265 (1987)CrossRefGoogle Scholar
  9. 9.
    Eustice, R.M., Singh, H., Leonard, J.J., Walter, M.R.: Visually mapping the RMS titanic: conservative covariance estimates for SLAM information filters. Int. J. Robot. Res. 25(12), 1223–1242 (2006)CrossRefGoogle Scholar
  10. 10.
    Fairfield, N., Kantor, G., Wettergreen, D.: Real-time SLAM with octree evidence grids for exploration in underwater tunnels. J. Field Robot. 24(1–2), 03–21 (2007)CrossRefGoogle Scholar
  11. 11.
    He, B., et al.: Autonomous navigation based on unscented-FastSLAM using particle swarm optimization for autonomous underwater vehicles. Measurement 71, 89–101 (2015)CrossRefGoogle Scholar
  12. 12.
    Henson, B.T., Zakharov, Y.V.: Attitude-trajectory estimation for forward-looking multibeam sonar based on acoustic image registration. IEEE J. Oceanic Eng. 99, 1–14 (2018)Google Scholar
  13. 13.
    Hernández, E., Ridao, P., Ribas, D., Mallios, A.: Probabilistic sonar scan matching for an AUV. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 255–260. IEEE (2009)Google Scholar
  14. 14.
    Hernàndez Bes, E., Ridao Rodríguez, P., Ribas Romagós, D., Batlle i Grabulosa, J.: MSISpIC: a probabilistic scan matching algorithm using a mechanical scanned imaging sonar. J. Phys. Agents 3(1), 3–11 (2009)Google Scholar
  15. 15.
    Hurtós, N., Palomeras, N., Carrera, A., Carreras, M.: Autonomous detection, following and mapping of an underwater chain using sonar. Ocean Eng. 130, 336–350 (2017)CrossRefGoogle Scholar
  16. 16.
    Hurtós, N., Ribas, D., Cufí, X., Petillot, Y., Salvi, J.: Fourier-based registration for robust forward-looking sonar mosaicing in low-visibility underwater environments. J. Field Robot. 32(1), 123–151 (2015)CrossRefGoogle Scholar
  17. 17.
    Inglis, G., Smart, C., Vaughn, I., Roman, C.: A pipeline for structured light bathymetric mapping. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4425–4432. IEEE (2012)Google Scholar
  18. 18.
    Jiang, M., Song, S., Tang, F., Li, Y., Liu, J., Feng, X.: Scan registration for underwater mechanical scanning imaging sonar using symmetrical Kullback-Leibler divergence. J. Electron. Imaging 28(1), 013026 (2019)CrossRefGoogle Scholar
  19. 19.
    Johannsson, H., Kaess, M., Englot, B., Hover, F., Leonard, J.: Imaging sonar-aided navigation for autonomous underwater harbor surveillance. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4396–4403. IEEE (2010)Google Scholar
  20. 20.
    Kim, K., Neretti, N., Intrator, N.: Mosaicing of acoustic camera images. IEE Proc.-Radar Sonar Navig. 152(4), 263–270 (2005)CrossRefGoogle Scholar
  21. 21.
    Kimball, P.W., Rock, S.M.: Mapping of translating, rotating icebergs with an autonomous underwater vehicle. IEEE J. Oceanic Eng. 40(1), 196–208 (2015)CrossRefGoogle Scholar
  22. 22.
    Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference of Manoeuvering and Control of Marine Craft, vol. 88, pp. 1–12 (2006)Google Scholar
  23. 23.
    Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time for pose graph SLAM. Int. J. Robot. Res. 32(14), 1611–1626 (2013)CrossRefGoogle Scholar
  24. 24.
    Ma, T., Li, Y., Wang, R., Cong, Z., Gong, Y.: Auv robust bathymetric simultaneous localization and mapping. Ocean Eng. 166, 336–349 (2018)CrossRefGoogle Scholar
  25. 25.
    Mallios, A., Ridao, P., Ribas, D., Carreras, M., Camilli, R.: Toward autonomous exploration in confined underwater environments. J. Field Robot. 33(7), 994–1012 (2016)CrossRefGoogle Scholar
  26. 26.
    Mallios, A., Ridao, P., Ribas, D., Hernández, E.: Scan matching SLAM in underwater environments. Auton. Robot. 36(3), 181–198 (2014)CrossRefGoogle Scholar
  27. 27.
    Massot-Campos, M., Oliver, G., Bodenmann, A., Thornton, B.: Submap bathymetric SLAM using structured light in underwater environments. In: 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 181–188. IEEE (2016)Google Scholar
  28. 28.
    Melo, J., Matos, A.: Survey on advances on terrain based navigation for autonomous underwater vehicles. Ocean Eng. 139, 250–264 (2017)CrossRefGoogle Scholar
  29. 29.
    Montesano, L., Minguez, J., Montano, L.: Probabilistic scan matching for motion estimation in unstructured environments. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3499–3504. IEEE (2005)Google Scholar
  30. 30.
    Muhammad, N., Fuentes-Perez, J.F., Tuhtan, J.A., Toming, G., Musall, M., Kruusmaa, M.: Map-based localization and loop-closure detection from a moving underwater platform using flow features. Auton. Robots 43(6), 1419–1434 (2019)CrossRefGoogle Scholar
  31. 31.
    Negahdaripour, S., Firoozfam, P., Sabzmeydani, P.: On processing and registration of forward-scan acoustic video imagery. In: The 2nd Canadian Conference on Computer and Robot Vision (CRV 2005), pp. 452–459. IEEE (2005)Google Scholar
  32. 32.
    Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)CrossRefGoogle Scholar
  33. 33.
    Norgren, P., Skjetne, R.: A multibeam-based slam algorithm for iceberg mapping using auvs. IEEE Access 6, 26318–26337 (2018)CrossRefGoogle Scholar
  34. 34.
    Ozog, P., Carlevaris-Bianco, N., Kim, A., Eustice, R.M.: Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle. J. Field Robot. 33(3), 265–289 (2016)CrossRefGoogle Scholar
  35. 35.
    Palomer, A., Ridao, P., Ribas, D.: Multibeam 3D underwater slam with probabilistic registration. Sensors 16(4), 560 (2016)CrossRefGoogle Scholar
  36. 36.
    Paull, L., Saeedi, S., Seto, M., Li, H.: Auv navigation and localization: a review. IEEE J. Oceanic Eng. 39(1), 131–149 (2014)CrossRefGoogle Scholar
  37. 37.
    Ribas, D., Ridao, P., Tardós, J.D., Neira, J.: Underwater SLAM in man-made structured environments. J. Field Robot. 25(11–12), 898–921 (2008)CrossRefGoogle Scholar
  38. 38.
    Roman, C., Singh, H.: A self-consistent bathymetric mapping algorithm. J. Field Robot. 24(1–2), 23–50 (2007)CrossRefGoogle Scholar
  39. 39.
    Roman, C.N.: Self consistent bathymetric mapping from robotic vehicles in the deep ocean. Ph.D. thesis, Massachusetts Institute of Technology (2005)Google Scholar
  40. 40.
    Santos, M.M., Zaffari, G.B., Ribeiro, P.O., Drews-Jr, P.L., Botelho, S.S.: Underwater place recognition using forward-looking sonar images: a topological approach. J. Field Robot. 36(2), 355–369 (2019)CrossRefGoogle Scholar
  41. 41.
    Song, S., Herrmann, J.M., Si, B., Liu, K., Feng, X.: Two-dimensional forward-looking sonar image registration by maximization of peripheral mutual information. Int. J. Adv. Robot. Syst. 14(6), 1–17 (2017)CrossRefGoogle Scholar
  42. 42.
    Stutters, L., Liu, H., Tiltman, C., Brown, D.J.: Navigation technologies for autonomous underwater vehicles. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(4), 581–589 (2008)CrossRefGoogle Scholar
  43. 43.
    White, C., Hiranandani, D., Olstad, C.S., Buhagiar, K., Gambin, T., Clark, C.M.: The malta cistern mapping project: underwater robot mapping and localization within ancient tunnel systems. J. Field Robot. 27(4), 399–411 (2010)CrossRefGoogle Scholar
  44. 44.
    Williams, S.B., Newman, P., Rosenblatt, J., Dissanayake, G., Durrant-Whyte, H.: Autonomous underwater navigation and control. Robotica 19(5), 481–496 (2001)CrossRefGoogle Scholar
  45. 45.
    Xie, L., Wang, S., Markham, A., Trigoni, N.: GraphTinker: outlier rejection and inlier injection for pose graph SLAM. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6777–6784. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Min Jiang
    • 1
    • 2
    • 3
  • Sanming Song
    • 1
    • 2
    Email author
  • Yiping Li
    • 1
    • 2
  • Wenming Jin
    • 1
    • 2
  • Jian Liu
    • 1
    • 2
  • Xisheng Feng
    • 1
    • 2
  1. 1.State Key Laboratory of RoboticsShenyang Institute of Automation, Chinese Academy of SciencesShenyangChina
  2. 2.Institutes for Robotics and Intelligent ManufacturingChinese Academy of SciencesShenyangChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations