Advertisement

A Modified Cartesian Space DMPs Model for Robot Motion Generation

  • Nailong LiuEmail author
  • Zhaoming Liu
  • Long Cui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11745)

Abstract

DMPs (dynamic movement primitives) are a method to generate trajectory planning or control signal for complex robot movements. Each DMP is a nonlinear dynamical system which can be used as a primitive action for complex movements. The origin DMPs are used to model the robot joint space motion, however in many cases, robot motions are defined in Cartesian space, the model of Cartesian space is necessary. A Cartesian space DMPs variant is proposed which adds a dynamical quaternions goal subsystem to make the generated cartesian space twist more smooth and steady in the initial stage in this paper. This DMPs variant can be useful in some robot tasks which often require low speed operations, such as contact operation.

Keywords

Dynamic movement primitives DMPs Robot learning Learning from demonstration 

References

  1. 1.
    Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32(3), 263–279 (2013)CrossRefGoogle Scholar
  2. 2.
    Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. 29(13), 1608–1639 (2010)CrossRefGoogle Scholar
  3. 3.
    Abu-Dakka, F.J., Nemec, B., Jorgensen, J.A., Savarimuthu, T.R., Kruger, N., Ude, A.: Adaptation of manipulation skills in physical contact with the environment to reference force profiles. Auton. Robots 39(2), 199–217 (2015)CrossRefGoogle Scholar
  4. 4.
    Rozo, L., Jiménez, P., Torras, C.: A robot learning from demonstration framework to perform force-based manipulation tasks. Intell. Serv. Robot. 6(1), 33–51 (2013)CrossRefGoogle Scholar
  5. 5.
    Schaal, S.: Dynamic movement primitives - a framework for motor control in humans and humanoid robots. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds.) Adaptive Motion of Animals and Machines, pp. 261–280. Springer, Tokyo (2006).  https://doi.org/10.1007/4-431-31381-8_23CrossRefGoogle Scholar
  6. 6.
    Savarimuthu, T.R., Liljekrans, D., Ellekilde, L.-P., Ude, A., Nemec, B., Kruger, N.: Analysis of human peg-in-hole executions in a robotic embodiment using uncertain grasps, pp. 233–239. IEEE (2013)Google Scholar
  7. 7.
    Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics, 2nd edn. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32552-1CrossRefzbMATHGoogle Scholar
  8. 8.
    Ijspeert, A., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2, pp. 1398–1403. IEEE (2002)Google Scholar
  9. 9.
    Xu, J., Hou, Z., Liu, Z., Qiao, H.: Compare contact model-based control and contact model-free learning: a survey of robotic peg-in-hole assembly strategies (2019)Google Scholar
  10. 10.
    Kober, J., Gienger, M., Steil, J.J.: Learning movement primitives for force interaction tasks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3192–3199 (2015)Google Scholar
  11. 11.
    Kulvicius, T., Ning, K., Tamosiunaite, M., Worgötter, F.: Joining movement sequences: modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Trans. Robot. 28(1), 145–157 (2011)CrossRefGoogle Scholar
  12. 12.
    Stulp, F.: DmpBbo - a C++ library for black-box optimization of dynamical movement primitives (2014)Google Scholar
  13. 13.
    Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online movement adaptation based on previous sensor experiences, pp. 365–371. IEEE (2011)Google Scholar
  14. 14.
    Kou, K.I., Xia, Y.-H.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of Automation (SIA)Chinese Academy of Sciences (CAS)ShenyangChina
  2. 2.Institutes for Robotics and Intelligent ManufacturingChinese Academy of Sciences (CAS)ShenyangChina
  3. 3.University of Chinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations