Advertisement

Design of Finger Exoskeleton Rehabilitation Robot Using the Flexible Joint and the MYO Armband

  • Jianxi Zhang
  • Jianbang Dai
  • Sheng ChenEmail author
  • Guozheng Xu
  • Xiang Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11745)

Abstract

High-risk diseases such as stroke can do great harm to human hands. Hand rehabilitation for stroke patients is a complex and necessary task. To achieve this goal, this paper introduces a hand exoskeleton equipment with flexible joints and EMG-base motion prediction. Experiment of the equipment includes kinematics analysis, EMG signal detection by MYO armband and motion prediction base on BP neural network. The result shows that the device can not only assists patient bending or extending fingers, but also perform six kinds of rehabilitation exercises with 92% accuracy for target motion recognition.

Keywords

Flexible joints Wire-driven Rehabilitation robot 

Notes

Acknowledgement

This paper is supported by the Primary Research & Development Program of Jiangsu Province (Grant No. BE2015701), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170898), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB460017), and the NUPTSF (Grant No. NY215050, No. NY218027 and No. 2018XZZ06).

References

  1. 1.
    Ates, S., Haarman, C.J.W., Stienen, A.H.A.: SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Auton. Robots 41(3), 711–723 (2017)CrossRefGoogle Scholar
  2. 2.
    Wolf, S.L., Blanton, S., Baer, H., et al.: Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 8(6), 325–338 (2002)Google Scholar
  3. 3.
    Diez, J.A., Catalan, J.M., Lledo, L.D., et al.: Multimodal robotic system for upper-limb rehabilitation in physical environment. Adv. Mech. Eng. 8(9), 8/9/1687814016670282 (2016)CrossRefGoogle Scholar
  4. 4.
    Sarac, M., Solazzi, M., Sotgiu, E., et al.: Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica 52, 749–761 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hansen, C., Gosselin, F., Ben Mansour, K., et al.: Design-validation of a hand exoskeleton using musculoskeletal modeling. Appl. Ergon. 68, 283–288 (2018)CrossRefGoogle Scholar
  6. 6.
    Kim, S.J., Kim, Y., Lee, H., Ghasemlou, P., Kim, J.: Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging. Med. Biol. Eng. Comput. 56, 261–272 (2018)CrossRefGoogle Scholar
  7. 7.
    Dicicco, M., Lucas, L., Matsuoka, Y.: Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In: Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 1622–1627. IEEE (2004)Google Scholar
  8. 8.
    Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The Rutgers Master II new design force feedback glove. IEEE/ASME Trans. Mechatron 7, 256–263 (2002)CrossRefGoogle Scholar
  9. 9.
    Yisheng, T.M.: Robotic Glove for Hand Rehabilitation [OL] (2019). http://www.siyizn.com. Accessed 27 Mar 2019
  10. 10.
    Adamovich, S., Merians, A., Boian, R., Tremaine, M., et al.: A virtual reality-based exercise system for hand rehabilitation post stroke. Teleoperators Virtual Environ. 14(2), 161–174 (2005)CrossRefGoogle Scholar
  11. 11.
    Wang, J., Li, J., Zhang, Y., Wang, S.: Design of an exoskeleton for index finger rehabilitation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 5957–5960. IEEE (2009)Google Scholar
  12. 12.
    Conti, R., et al.: Kinematic synthesis and testing of a new portable hand exoskeleton. Meccanica 52, 2873–2897 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Randazzo, L., Iturrate, I., Perdikis, S., et al.: mano: A wearable hand exoskeleton for activities of daily living and neurorehabilitation. IEEE Robot. Autom. Lett. 3(1), 500–507 (2018)CrossRefGoogle Scholar
  14. 14.
    Bataller, A., Cabrera, J.A., Clavijo, M., Castillo, J.J.: Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech. Mach. Theory 105, 31–43 (2016)CrossRefGoogle Scholar
  15. 15.
    Park, Y., Jo, I., Lee, J., et al.: A dual-cable hand exoskeleton system for virtual reality. Mechatronics 49, 177–186 (2018)CrossRefGoogle Scholar
  16. 16.
    Tadano, K., Akai, M., Kadota, K., Kawashima, K.: Development of grip amplified glove using bi-articular mechanism with pneumatic artificial rubber muscle. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2363–2368 (2010)Google Scholar
  17. 17.
    Biggar, S., Yao, W.: Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(10), 1 (2016)CrossRefGoogle Scholar
  18. 18.
    Hu, X., Tong, K., Wei, X., Rong, W., Susanto, E., Ho, S.: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J. Electromyogr. Kinesiol. 23(5), 1065–1074 (2013)CrossRefGoogle Scholar
  19. 19.
    Jones, C.L., Wang, F., Morrison, R., et al.: Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans. Mechatron. 19(1), 131–140 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jianxi Zhang
    • 1
  • Jianbang Dai
    • 1
  • Sheng Chen
    • 1
    Email author
  • Guozheng Xu
    • 1
  • Xiang Gao
    • 1
  1. 1.Nanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations