Skip to main content

Design of Wall Climbing Robot with Non-magnetic Surface

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11745))

Included in the following conference series:

Abstract

With the rapid development of economy, the energy consumption in the world is accelerating, and the number of large pressure vessels which are convenient for storing fuels is increasing. Large pressure vessels generally use a welding process to close the wall surface, and the weld seam needs to be inspected regularly to ensure the safe operation of the pressure vessels. At present, the main detection of welds is manual, and it is expected that magnetic pressure vessel can be detected by magnetic adsorption robots. In order to detect large non-magnetic pressure vessels, we conducted a study on a pneumatic adsorption wall climbing robot. We first develop a basic research plan for the mechanical design of wall climbing robot and then build a mathematical model based on the actual situation of the wall climbing robot which is working on the surface of pressure vessels. By CFD simulation technology, the simulation and experiment results of the aerodynamics of the impeller rotation from inside of wall climbing robot can be envisioned and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot Int. J. 36(4), 358–364 (2009)

    Article  Google Scholar 

  2. Zhang, Y., Nishi, A.: Low-pressure air motor for wall-climbing robot actuation. Mechatronics 13(4), 377–392 (2003)

    Article  Google Scholar 

  3. Jiang, Y., Wang, H., Fang, L.: Motion control of micro wall-climbing robot on unsmoothed wall. In: World Congress on Intelligent Control and Automation, pp. 3252–3257 (2008)

    Google Scholar 

  4. Guo, L., Rogers, K., Kirkham: A climbing robot for wall exploration. In: Proceedings of IEEE/ASME International Conference on Robotics and Automation, pp. 2495–2500 (1994)

    Google Scholar 

  5. Karla, L.P., Gu, J., Meng, M.: A wall climbing robot for oil tank inspection. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 1523–1528 (2006)

    Google Scholar 

  6. Xu, Z.L., Ma, P.S.: A wall-climbing robot for labelling scale of oil tank’s volume. Robotica 20(2), 209–212 (2002)

    Article  Google Scholar 

  7. Hagen, S.: Neptune: above-ground storage tank inspection robot system. IEEE Robot. Autom. Mag. 2(2), 9–15 (1995)

    Article  Google Scholar 

  8. Blander, J., Zealand, M.A.F.B.N.: Review of Options for In-water Cleaning of Ships. MAF Biosecurity New Zealand, Wellington (2009)

    Google Scholar 

  9. Ross, B., Bares, J.: A semi-autonomous robot for stripping paint from large vessels. Int. J. Robot. Res. 22, 617–626 (2003)

    Article  Google Scholar 

  10. Xu, Z., Zhang, K.: Design and optimization of a magnetic wheel for a grit-blasting robot for use on ship hulls. Robotic 35, 712–728 (2017)

    Article  Google Scholar 

  11. Shi, Y., Cao, Z.X., et al.: Study on air flow dynamic characteristic of mechanical ventilation of a lung simulator. Sci. China Technol. Sci. 60, 243–250 (2017)

    Article  Google Scholar 

  12. Bogue, R.: Robots in the nuclear industry: a review of technologies and applications. Ind. Robot. 38, 113–118 (2011)

    Article  Google Scholar 

  13. Balaguer, C., Gimenez, A., Abdulrahim, C.M.: ROMA robots for inspection of steel-based infrastructures. Ind. Robot. 29, 246–251 (2002)

    Article  Google Scholar 

  14. Bagherzadeh, M.R., Vosburgh, G.R.: Design and prototyping of a hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. In: Manuel, A., Pablo, G.S. (eds.) Climbing and Walking Robots, pp. 1071–1080. Springer, Berlin (2005). https://doi.org/10.1007/3-540-29461-9_105

    Chapter  Google Scholar 

  15. Tawakoni, M., Vosburgh, G.R.: A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. Ind. Robot. 32, 171–178 (2005)

    Article  Google Scholar 

  16. Ortiz, F., Alonso, D.: A reference control architecture for service robots implemented on a climbing vehicle. In: Vardanega, T., Wellings, A. (eds.) Reliable Software Technologies. LNCS, vol. 3555, pp. 13–24. Springer, Berlin (2005). https://doi.org/10.1007/11499909_2

    Chapter  Google Scholar 

  17. Shi, Y., Wang, Y., Cai, M.: Study on the aviation oxygen supply system based on a mechanical ventilation model. Chin. J. Aeronaut. 31, 197–204 (2018)

    Article  Google Scholar 

  18. Xiao, J., Li, B., Song, Q.: Rise-Rover: a wall-climbing robot with high reliability and load-carrying capacity. In: Proceedings of IEEE International Conference on Robotics Biomimetics (ROBIO), pp. 2072–2077, December 2015

    Google Scholar 

  19. Pope, M.T.: A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Robot. 33(1), 38–48 (2017)

    Article  Google Scholar 

  20. Jung, Y., Jung, S.W., Jung, Y.H., Myung, H.: Development of a drone-type wall-sticking and climbing robot. In: 12th International Conference Ubiquitous Robots Ambient Intelligence (URAI), pp. 386–389, October 2015

    Google Scholar 

  21. Guan, Y., et al.: A modular biped wall-climbing robot with high mobility and manipulating function. IEEE/ASME Trans. Mechatronics 18(6), 1787–1798 (2013)

    Article  Google Scholar 

  22. Qian, Z.Y., Zhao, Y.Z., Fu, Z.: Development of wall-climbing robots with sliding suction cups. In: IEEE/RSJ International Conference Intelligent Robots and Systems, pp. 3417–3422, October 2006

    Google Scholar 

  23. Taches, F., Fischer, W.: Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures. Field Robot. 26(5), 453–476 (2009)

    Google Scholar 

  24. Lee, G., Woo, J., Kim, J.: High-payload climbing and transitioning by compliant locomotion with magnet adhesion. Robot. Autonomy. Syst. 60(10), 1308–1316 (2012)

    Article  Google Scholar 

  25. Zhu, H., Guan, Y., Wu, W., Zhang, L., Zhou, X., Zhang, H.: Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot. IEEE-ASME Trans. Metatron. 20(2), 653–662 (2015)

    Article  Google Scholar 

  26. Lee, G., Kim, H., So, K.: Series of multilinked caterpillar track-type climbing robots. J. Field Robot. 3(6), 737–750 (2016)

    Article  Google Scholar 

  27. Barometer, P., Gillies, A.G., Fearing, R.S.: Dynamic climbing of near-vertical smooth surfaces. In: International Conference on Intelligent Robots and Systems (IROS), Algarve, pp. 286–292 (2012)

    Google Scholar 

  28. Koh, K., Sreekumar, M., Puntambekar, S.: Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot. Mechatronics 35, 122–135 (2016)

    Article  Google Scholar 

  29. Menon, C., Siti, M.: Biologically inspired adhesion-based surface climbing robot. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2715–2720 (2005)

    Google Scholar 

  30. Murphy, M.P., Siti, M.: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Trans. Metatron. 12(3), 330–338 (2007)

    Google Scholar 

  31. Unver, O., Siti, M.: A palm-size, tank-like climbing robot using soft elastomer adhesive treads. Int. J. Robot. Res. 29(14), 1761–1777 (2010)

    Google Scholar 

  32. Seo, T., Siti, M.: Tank-like module-based climbing robot using passive compliant joints. IEEE/ASME Trans. Metatron. 18(1), 397–408 (2013)

    Article  Google Scholar 

  33. Greeter, M., Shah, G.: Toward micro wall-climbing robots using biomimetic fibrillary adhesives. In: International Symposium on Autonomous Robot for Research and Education (AMIRE), pp. 39–46 (2005)

    Google Scholar 

  34. Kahn, J., Liu, Y., Sadeghi, A., Menon, C.: A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps. Smart Mater. Struct. 20(11), 1–11 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L., Liu, C., Zhou, S., Zhu, D., Liu, C. (2019). Design of Wall Climbing Robot with Non-magnetic Surface. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11745. Springer, Cham. https://doi.org/10.1007/978-3-030-27529-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27529-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27528-0

  • Online ISBN: 978-3-030-27529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics