Design of Wall Climbing Robot with Non-magnetic Surface

  • Liang ZhaoEmail author
  • Chunlong Liu
  • Shaoyun Zhou
  • Deyong Zhu
  • Chuang Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11745)


With the rapid development of economy, the energy consumption in the world is accelerating, and the number of large pressure vessels which are convenient for storing fuels is increasing. Large pressure vessels generally use a welding process to close the wall surface, and the weld seam needs to be inspected regularly to ensure the safe operation of the pressure vessels. At present, the main detection of welds is manual, and it is expected that magnetic pressure vessel can be detected by magnetic adsorption robots. In order to detect large non-magnetic pressure vessels, we conducted a study on a pneumatic adsorption wall climbing robot. We first develop a basic research plan for the mechanical design of wall climbing robot and then build a mathematical model based on the actual situation of the wall climbing robot which is working on the surface of pressure vessels. By CFD simulation technology, the simulation and experiment results of the aerodynamics of the impeller rotation from inside of wall climbing robot can be envisioned and verified.


Non-magnetic surface Wall climbing robot Vacuum adsorption Aerodynamics 


  1. 1.
    Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot Int. J. 36(4), 358–364 (2009)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Nishi, A.: Low-pressure air motor for wall-climbing robot actuation. Mechatronics 13(4), 377–392 (2003)CrossRefGoogle Scholar
  3. 3.
    Jiang, Y., Wang, H., Fang, L.: Motion control of micro wall-climbing robot on unsmoothed wall. In: World Congress on Intelligent Control and Automation, pp. 3252–3257 (2008)Google Scholar
  4. 4.
    Guo, L., Rogers, K., Kirkham: A climbing robot for wall exploration. In: Proceedings of IEEE/ASME International Conference on Robotics and Automation, pp. 2495–2500 (1994)Google Scholar
  5. 5.
    Karla, L.P., Gu, J., Meng, M.: A wall climbing robot for oil tank inspection. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 1523–1528 (2006)Google Scholar
  6. 6.
    Xu, Z.L., Ma, P.S.: A wall-climbing robot for labelling scale of oil tank’s volume. Robotica 20(2), 209–212 (2002)CrossRefGoogle Scholar
  7. 7.
    Hagen, S.: Neptune: above-ground storage tank inspection robot system. IEEE Robot. Autom. Mag. 2(2), 9–15 (1995)CrossRefGoogle Scholar
  8. 8.
    Blander, J., Zealand, M.A.F.B.N.: Review of Options for In-water Cleaning of Ships. MAF Biosecurity New Zealand, Wellington (2009)Google Scholar
  9. 9.
    Ross, B., Bares, J.: A semi-autonomous robot for stripping paint from large vessels. Int. J. Robot. Res. 22, 617–626 (2003)CrossRefGoogle Scholar
  10. 10.
    Xu, Z., Zhang, K.: Design and optimization of a magnetic wheel for a grit-blasting robot for use on ship hulls. Robotic 35, 712–728 (2017)CrossRefGoogle Scholar
  11. 11.
    Shi, Y., Cao, Z.X., et al.: Study on air flow dynamic characteristic of mechanical ventilation of a lung simulator. Sci. China Technol. Sci. 60, 243–250 (2017)CrossRefGoogle Scholar
  12. 12.
    Bogue, R.: Robots in the nuclear industry: a review of technologies and applications. Ind. Robot. 38, 113–118 (2011)CrossRefGoogle Scholar
  13. 13.
    Balaguer, C., Gimenez, A., Abdulrahim, C.M.: ROMA robots for inspection of steel-based infrastructures. Ind. Robot. 29, 246–251 (2002)CrossRefGoogle Scholar
  14. 14.
    Bagherzadeh, M.R., Vosburgh, G.R.: Design and prototyping of a hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. In: Manuel, A., Pablo, G.S. (eds.) Climbing and Walking Robots, pp. 1071–1080. Springer, Berlin (2005). Scholar
  15. 15.
    Tawakoni, M., Vosburgh, G.R.: A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. Ind. Robot. 32, 171–178 (2005)CrossRefGoogle Scholar
  16. 16.
    Ortiz, F., Alonso, D.: A reference control architecture for service robots implemented on a climbing vehicle. In: Vardanega, T., Wellings, A. (eds.) Reliable Software Technologies. LNCS, vol. 3555, pp. 13–24. Springer, Berlin (2005). Scholar
  17. 17.
    Shi, Y., Wang, Y., Cai, M.: Study on the aviation oxygen supply system based on a mechanical ventilation model. Chin. J. Aeronaut. 31, 197–204 (2018)CrossRefGoogle Scholar
  18. 18.
    Xiao, J., Li, B., Song, Q.: Rise-Rover: a wall-climbing robot with high reliability and load-carrying capacity. In: Proceedings of IEEE International Conference on Robotics Biomimetics (ROBIO), pp. 2072–2077, December 2015Google Scholar
  19. 19.
    Pope, M.T.: A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Robot. 33(1), 38–48 (2017)CrossRefGoogle Scholar
  20. 20.
    Jung, Y., Jung, S.W., Jung, Y.H., Myung, H.: Development of a drone-type wall-sticking and climbing robot. In: 12th International Conference Ubiquitous Robots Ambient Intelligence (URAI), pp. 386–389, October 2015Google Scholar
  21. 21.
    Guan, Y., et al.: A modular biped wall-climbing robot with high mobility and manipulating function. IEEE/ASME Trans. Mechatronics 18(6), 1787–1798 (2013)CrossRefGoogle Scholar
  22. 22.
    Qian, Z.Y., Zhao, Y.Z., Fu, Z.: Development of wall-climbing robots with sliding suction cups. In: IEEE/RSJ International Conference Intelligent Robots and Systems, pp. 3417–3422, October 2006Google Scholar
  23. 23.
    Taches, F., Fischer, W.: Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures. Field Robot. 26(5), 453–476 (2009)Google Scholar
  24. 24.
    Lee, G., Woo, J., Kim, J.: High-payload climbing and transitioning by compliant locomotion with magnet adhesion. Robot. Autonomy. Syst. 60(10), 1308–1316 (2012)CrossRefGoogle Scholar
  25. 25.
    Zhu, H., Guan, Y., Wu, W., Zhang, L., Zhou, X., Zhang, H.: Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot. IEEE-ASME Trans. Metatron. 20(2), 653–662 (2015)CrossRefGoogle Scholar
  26. 26.
    Lee, G., Kim, H., So, K.: Series of multilinked caterpillar track-type climbing robots. J. Field Robot. 3(6), 737–750 (2016)CrossRefGoogle Scholar
  27. 27.
    Barometer, P., Gillies, A.G., Fearing, R.S.: Dynamic climbing of near-vertical smooth surfaces. In: International Conference on Intelligent Robots and Systems (IROS), Algarve, pp. 286–292 (2012)Google Scholar
  28. 28.
    Koh, K., Sreekumar, M., Puntambekar, S.: Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot. Mechatronics 35, 122–135 (2016)CrossRefGoogle Scholar
  29. 29.
    Menon, C., Siti, M.: Biologically inspired adhesion-based surface climbing robot. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2715–2720 (2005)Google Scholar
  30. 30.
    Murphy, M.P., Siti, M.: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Trans. Metatron. 12(3), 330–338 (2007)Google Scholar
  31. 31.
    Unver, O., Siti, M.: A palm-size, tank-like climbing robot using soft elastomer adhesive treads. Int. J. Robot. Res. 29(14), 1761–1777 (2010)Google Scholar
  32. 32.
    Seo, T., Siti, M.: Tank-like module-based climbing robot using passive compliant joints. IEEE/ASME Trans. Metatron. 18(1), 397–408 (2013)CrossRefGoogle Scholar
  33. 33.
    Greeter, M., Shah, G.: Toward micro wall-climbing robots using biomimetic fibrillary adhesives. In: International Symposium on Autonomous Robot for Research and Education (AMIRE), pp. 39–46 (2005)Google Scholar
  34. 34.
    Kahn, J., Liu, Y., Sadeghi, A., Menon, C.: A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps. Smart Mater. Struct. 20(11), 1–11 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liang Zhao
    • 1
    • 2
    Email author
  • Chunlong Liu
    • 1
  • Shaoyun Zhou
    • 3
  • Deyong Zhu
    • 1
    • 2
  • Chuang Liu
    • 1
    • 2
  1. 1.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of ScienceBeijingChina
  3. 3.Tohoku UniversitySendaiJapan

Personalised recommendations