Advertisement

A Methodology for Multi-goal Trajectory Planning in Welding

  • Nianfeng Wang
  • Yaoqiang HeEmail author
  • Xianmin Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11745)

Abstract

In this paper, a methodology is proposed for multi-goal trajectory planning in welding, which is divided into effective movements and supporting movements. For effective movements, four objective functions are defined to describe the task requirements. A non-dominated sorting genetic algorithm (NSGA-II) is used to get the optimum solution. For supporting movements, the classical algorithm RRT-Connect is adopted to find a minimum-time trajectory and a smoothing algorithm is proposed to remove the redundant vertices. A simulation is presented to show that the proposed algorithms are effective and an experiment is conducted to illustrate that the trajectories meet the welding requirements.

Keywords

Trajectory planning Multi-goal Welding Smoothing algorithm 

Notes

Acknowledgments

The authors would like to gratefully acknowledge the reviewers comments. This work is supported by National Natural Science Foundation of China (Grant Nos. U1713207), Science and Technology Planning Project of Guangdong Province (2017A010102005), Key Program of Guangzhou Technology Plan (Grant No. 201904020020).

References

  1. 1.
    Verschueren, R., van Duijkeren, N., Swevers, J., Diehl, M.: Time-optimal motion planning for n-DOF robot manipulators using a path-parametric system reformulation. In: 2016 American Control Conference (ACC), pp. 2092–2097. IEEE (2016)Google Scholar
  2. 2.
    Bourbonnais, F., Bigras, P., Bonev, I.A.: Minimum-time trajectory planning and control of a pick-and-place five-bar parallel robot. IEEE/ASME Trans. Mechatron. 20(2), 740–749 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhao, Y., Wang, Y., Bortoff, S.A., Nikovski, D.: Energy-efficient collision-free trajectory planning using alternating quadratic programming. In: 2014 American Control Conference, pp. 1249–1254. IEEE (2014)Google Scholar
  4. 4.
    Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47(1), 140–149 (2000)CrossRefGoogle Scholar
  5. 5.
    Huang, P., Xu, Y., Liang, B.: Global minimum-jerk trajectory planning of space manipulator. Int. J. Control Autom. Syst. 4(4), 405–413 (2006)Google Scholar
  6. 6.
    Gasparetto, A., Zanotto, V.: A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 42(4), 455–471 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gasparetto, A., Zanotto, V.: Optimal trajectory planning for industrial robots. Adv. Eng. Softw. 41(4), 548–556 (2010)CrossRefGoogle Scholar
  8. 8.
    Huang, J., Hu, P., Wu, K., Zeng, M.: Optimal time-jerk trajectory planning for industrial robots. Mech. Mach. Theory 121, 530–544 (2018)CrossRefGoogle Scholar
  9. 9.
    Alatartsev, S., Ortmeier, F.: Thesis abstract: path-planning for industrial robots among multiple under-specified tasks (2013)Google Scholar
  10. 10.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ammar, A., Bennaceur, H., Châari, I., Koubâa, A., Alajlan, M.: Relaxed dijkstra and a* with linear complexity for robot path planning problems in large-scale grid environments. Soft Comput. 20(10), 4149–4171 (2016)CrossRefGoogle Scholar
  12. 12.
    Duchoň, F., et al.: Path planning with modified a star algorithm for a mobile robot. Procedia Eng. 96, 59–69 (2014)CrossRefGoogle Scholar
  13. 13.
    Kang, H.I., Lee, B., Kim, K.: Path planning algorithm using the particle swarm optimization and the improved Dijkstra algorithm. In: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, vol. 2, pp. 1002–1004. IEEE (2008)Google Scholar
  14. 14.
    LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning (1998)Google Scholar
  15. 15.
    Klemm, S., et al.: RRT?-connect: faster, asymptotically optimal motion planning. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1670–1677. IEEE (2015)Google Scholar
  16. 16.
    Kuffner Jr., J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning (2002) Google Scholar
  17. 17.
    Hauser, K., Ng-Thow-Hing, V.: Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2493–2498. IEEE (2010)Google Scholar
  18. 18.
    Pan, J., Zhang, L., Manocha, D.: Collision-free and smooth trajectory computation in cluttered environments. Int. J. Robot. Res. 31(10), 1155–1175 (2012)CrossRefGoogle Scholar
  19. 19.
    Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations