Skip to main content

Urban Analytics of Big Transportation Data for Supporting Smart Cities

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2019)

Abstract

The advances in technologies and the popularity of the smart city concepts have led to an increasing amount of digital data available for urban research, which in turn has led to urban analytics. In urban research, researchers who conduct paper-based or telephone-based travel surveys often collect biased and inaccurate data about movements of their participants. Although the use of global positioning system (GPS) trackers in travel studies improves the accuracy of exact participant trip tracking, the challenge of labelling trip purpose and transportation mode still persists. The automation of such a task would be beneficial to travel studies and other applications that rely on contextual knowledge (e.g., current travel mode of a person). In DaWaK 2018, we made use of both the GPS and accelerometer data to classify ground transportation modes. In the current DaWaK 2019 paper, we explore additional parameters—namely, dwell time and dwell time history (DTH)—to further enhance the urban analytic capability. In particular, with these additional parameters, classification and predictive analytics of ground transportation modes becomes more accurate. This, in turn, helps the development of a smarter city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://impact.canada.ca/

  2. 2.

    https://impact.canada.ca/en/challenges/smart-cities, https://www.infrastructure.gc.ca/cities-villes/index-eng.html

References

  1. Braun, P., Cuzzocrea, A., Jiang, F., Leung, C.K.-S., Pazdor, A.G.M.: MapReduce-based complex big data analytics over uncertain and imprecise social networks. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 130–145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_10

    Chapter  Google Scholar 

  2. Chen, Y.C., Wang, E.T., Chen, A.L.P.: Mining user trajectories from smartphone data considering data uncertainty. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 51–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_4

    Chapter  Google Scholar 

  3. Hoi, C.S.H., Leung, C.K., Tran, K., Cuzzocrea, A., Bochicchio, M., Simonetti, M.: Supporting social information discovery from big uncertain social key-value data via graph-like metaphors. In: Xiao, J., Mao, Z.-H., Suzumura, T., Zhang, L.-J. (eds.) ICCC 2018. LNCS, vol. 10971, pp. 102–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94307-7_8

    Chapter  Google Scholar 

  4. Egho, E., Gay, D., Trinquart, R., Boullé, M., Voisine, N., Clérot, F.: MiSeRe-hadoop: a large-scale robust sequential classification rules mining framework. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 105–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_8

    Chapter  Google Scholar 

  5. Leung, C.K.: Big data analysis and mining. In: Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics, pp. 15–27 (2019). https://doi.org/10.4018/978-1-5225-7598-6.ch002

  6. Leung, C.K., Jiang, F., Pazdor, A.G.M., Peddle, A.M.: Parallel social network mining for interesting ‘following’ patterns. Concurr. Comput. Pract. Exp. 28(15), 3994–4012 (2016). https://doi.org/10.1002/cpe.3773

    Article  Google Scholar 

  7. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34 (1996)

    Google Scholar 

  8. Katakis, I. (ed.): Mining urban data (Part A). Inf. Syst. 54, 113–114 (2015). https://doi.org/10.1016/j.is.2015.08.002

    Article  Google Scholar 

  9. Andrienko, G., et al.: Mining urban data (Part B). Inf. Syst. 57, 75–76 (2016). https://doi.org/10.1016/j.is.2016.01.001

    Article  Google Scholar 

  10. Andrienko, G., et al.: Mining urban data (Part C). Inf. Syst. 64, 219–220 (2017). https://doi.org/10.1016/j.is.2016.09.003

    Article  Google Scholar 

  11. Behnisch, M., Ultsch, A.: Urban data mining using emergent SOM. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 311–318. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78246-9_37

    Chapter  Google Scholar 

  12. Sokmenoglu, A., Cagdas, G., Sariyildiz, S.: Exploring the patterns and relationships of urban attributes by data mining. In: eCAADe 2010, pp. 873–881 (2010)

    Google Scholar 

  13. Ettema, D., Timmermans, H., van Veghel, L.: Effects of data collection methods in travel and activity research (1996)

    Google Scholar 

  14. Murakami, E., Wagner, D.P., Neumeister, D.M.: Using global positioning systems and personal digital assistants for personal travel surveys in the United States. In: Transport Surveys: Raising the Standard, pp. III-B:1–III-B:21 (2000)

    Google Scholar 

  15. Stopher, P.R..: Household travel surveys: cutting-edge concepts for the next century. In: Conference on Household Travel Surveys, pp. 11–23 (1995)

    Google Scholar 

  16. Maat, K., Timmermans, H.J.P., Molin, E.: A model of spatial structure, activity participation and travel behavior. In: WCTR 2004 (2004)

    Google Scholar 

  17. Stopher, P.R.: Use of an activity-based diary to collect household travel data. Transportation 19(2), 159–176 (1992). https://doi.org/10.1007/BF02132836

    Article  Google Scholar 

  18. Arentze, T., et al.: New activity diary format: design and limited empirical evidence. TRR 1768, 79–88 (2001). https://doi.org/10.3141/1768-10

    Article  Google Scholar 

  19. Schlich, R., Axhausen, K.W.: Habitual travel behaviour: evidence from a six-week travel diary. Transportation 30(1), 13–36 (2003). https://doi.org/10.1023/A:1021230507071

    Article  Google Scholar 

  20. Forrest, T., Pearson, D.: Comparison of trip determination methods in household travel surveys enhanced by a global positioning system. TRR 1917, 63–71 (2005). https://doi.org/10.1177/0361198105191700108

    Article  Google Scholar 

  21. Wolf, J., Guensler, R., Bachman, W.: Elimination of the travel diary: experiment to derive trip purpose from global positioning system travel data. TRR 1768, 125–134 (2001). https://doi.org/10.3141/1768-15

    Article  Google Scholar 

  22. Biljecki, F., Ledoux, H., van Oosterom, P.: Transportation mode-based segmentation and classification of movement trajectories. IJGIS 27(2), 385–407 (2013). https://doi.org/10.1080/13658816.2012.692791

    Article  Google Scholar 

  23. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.: Understanding transportation modes based on GPS data for web applications. ACM TWeb 4(1), 1:1–1:36 (2010). https://doi.org/10.1145/1658373.1658374

    Article  Google Scholar 

  24. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode detection on smartphones. In: SenSys 2013, pp. 13:1–13:14 (2013). https://doi.org/10.1145/2517351.2517367

  25. Shaque, M.A., Hato, E.: Use of acceleration data for transportation mode prediction. Transportation 42(1), 163–188 (2015). https://doi.org/10.1007/s11116-014-9541-6

    Article  Google Scholar 

  26. Ellis, K., Godbole, S., Marshall, S., Lanckriet, G., Staudenmayer, J., Kerr, J.: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms. Front. Public Health 2, 36:1–36:8 (2014). https://doi.org/10.3389/fpubh.2014.00036

  27. Chung, E., Shalaby, A.: A trip reconstruction tool for GPS-based personal travel surveys. Transp. Plan. Technol. 28(5), 381–401 (2005). https://doi.org/10.1080/03081060500322599

    Article  Google Scholar 

  28. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: ACM SIGSPATIAL GIS 2011, pp. 54–63 (2011). https://doi.org/10.1145/2093973.2093982

  29. Leung, C.K., Braun, P., Pazdor, A.G.M.: Effective classification of ground transportation modes for urban data mining in smart cities. In: Ordonez, C., Bellatreche, L. (eds.) DaWaK 2018. LNCS, vol. 11031, pp. 83–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98539-8_7

    Chapter  Google Scholar 

Download references

Acknowledgements

This project is partially supported by NSERC (Canada) and University of Manitoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carson K. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leung, C.K., Braun, P., Hoi, C.S.H., Souza, J., Cuzzocrea, A. (2019). Urban Analytics of Big Transportation Data for Supporting Smart Cities. In: Ordonez, C., Song, IY., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2019. Lecture Notes in Computer Science(), vol 11708. Springer, Cham. https://doi.org/10.1007/978-3-030-27520-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27520-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27519-8

  • Online ISBN: 978-3-030-27520-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics