Skip to main content

Dysregulation of Glycogen Metabolism with Concomitant Spatial Memory Dysfunction in Type 2 Diabetes: Potential Beneficial Effects of Chronic Exercise

  • Chapter
  • First Online:
Brain Glycogen Metabolism

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 23))

Abstract

Cognitive dysfunction is one of the comorbidities of diabetes mellitus, but hippocampus-dependent learning and memory, a component of cognitive function, shows particular decline in type 2 diabetes, suggesting an increased risk for dementia and Alzheimer’s disease. Cognitive function is related to dysregulated glucose metabolism, which is the typical cause of type 2 diabetes; however, hippocampal glycogen and its metabolite lactate are also crucial for hippocampus-dependent memory function. Type 2 diabetes induced hippocampus-dependent learning and memory dysfunction can be improved by chronic exercise and this improvement may possibly mediate through an adaptation of the astrocyte-neuron lactate shuttle (ANLS). This chapter focuses on the dysregulation of hippocampal glycometabolism in type 2 diabetes examining both existing evidence as well as the potential underlying pathophysiological mechanism responsible for memory dysfunction in type 2 diabetes, and showing for the first time that chronic exercise could be an effective therapy for type-2-diabetes-induced hippocampal memory decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANLS:

Astrocyte-neuron lactate shuttle

BDNF:

Brain-derived neurotrophic factor

DAB:

1,4-Dideoxy-1,4-imino-D-arabinitol

GLUT:

Glucose transporter

GSK-3β:

Phosphorylated-GS kinase-3β

LETO:

Long-Evans Tokushima Otsuka

LTP:

Long-term potentiation

MCT:

Monocarboxylate transporters

MHPG:

NA metabolites

NA:

Noradrenaline

NMDA:

N-methyl-d-aspartate

OLETF:

Otsuka Long-Evans Tokushima Fatty

pCofilin:

Phosphorylated-Cofilin

pCREB:

Phosphorylated-cAMP-response-element-binding protein

PGK:

Phosphoglycerate kinase

PTG:

Protein targeting to glycogen

STZ:

Streptozotocin

VIP:

Vasoactive intestinal peptide

ZDF:

Zucker diabetic fatty

ZL:

Zucker lean

ZO:

Zucker obese

References

  • Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, Sulkava R, Kivipelto M (2010) Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology 75:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Pellerin L, Magistretti PJ (2000) Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 30:382–391

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Pellerin L, Magistretti PJ (2003) Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. J Neurochem 88:900–908

    Article  CAS  Google Scholar 

  • Aveseh M, Nikooie R, Sheibani V, Esmaeili-Mahani S (2014) Endurance training increases brain lactate uptake during hypoglycemia by up regulation of brain lactate transporters. Mol Cell Endocrinol 394:29–36

    Article  CAS  PubMed  Google Scholar 

  • Balducci S, Iacobellis G, Parisi L, Di Biase N, Calandriello E, Leonetti F, Fallucca F (2006) Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complications 20:216–223

    Article  PubMed  Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  PubMed  CAS  Google Scholar 

  • Bergström J, Hultman E (1966) Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 210:309–310

    Article  PubMed  Google Scholar 

  • Bhattacharjee M, Venugopal B, Wong K, Goto Y, Bhattacharjee M (2006) Mitochondrial disorder, diabetes mellitus, and findings in three muscles, including the heart. Ultrastruct Pathol 30:481–487

    Article  CAS  PubMed  Google Scholar 

  • Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14:591–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Biessels G-J, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74

    Article  PubMed  Google Scholar 

  • Bolz L, Heigele S, Bischofberger J (2015) Running improves pattern separation during novel object recognition. Brain Plast 1:129–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Boury-Jamot B, Carrad A, Martin J, Halfon O, Magistretti P, Boutrel B (2015) Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine. Mol Psychiatry 21:1–7

    Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  Google Scholar 

  • Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046

    Article  PubMed  Google Scholar 

  • Canada SE, Weaver SA, Sharpe SN, Pederson BA (2011) Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res 89:585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinaux JR, Magistretti PJ (1996) Vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and noradrenaline induce the transcription factors CCAAT/enhancer binding protein (C/EBP)-beta and C/EBP delta in mouse cortical astrocytes: involvement in cAMP-regulated glyco. J Neurosci 16:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13:478–490

    Article  CAS  PubMed  Google Scholar 

  • Chabot C, Massicotte G, Milot M, Trudeau F, Gagné J (1997) Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 768:249–256

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Seaquist ER, Gruetter R (2003) Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HB, Gordon GRJ, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl Cyclase. Neuron 75:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B (2010) Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 33:e147–e167

    Article  PubMed  PubMed Central  Google Scholar 

  • Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ (2010) Running enhances spatial pattern separation in mice. Proc Natl Acad Sci 107:2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR (2003) PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest 111:1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes - systematic overview of prospective observational studies. Diabetologia 48:2460–2469

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 39:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Gaesser GA, Brooks GA (1980) Glycogen repletion following continuous and intermittent exercise to exhaustion. J Appl Physiol Resp Env Ex Physiol 49:722–728

    CAS  Google Scholar 

  • Geroldi C, Frisoni GB, Paolisso G, Bandinelli S, Lamponi M, Abbatecola AM, Zanetti O, Guralnik JM, Ferrucci L (2005) Insulin resistance in cognitive impairment. Arch Neurol 62:1067–1072

    Article  PubMed  Google Scholar 

  • Gibbs ME, O’Dowd BS, Hertz E, Hertz L (2006) Astrocytic energy metabolism consolidates memory in young chicks. Neuroscience 141:9–13

    Article  CAS  PubMed  Google Scholar 

  • Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549

    Article  CAS  PubMed  Google Scholar 

  • Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, Tsui W, Richardson S, Javier E, Convit A (2007) Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50:711–719

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Heijer T, Vermeer SE, van Dijk EJ, Prins ND, Koudstaal PJ, Hofman A, Breteler MMB (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604–1610

    Article  Google Scholar 

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+−dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloszy JO (2005) Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol 63110:338–343

    Article  CAS  Google Scholar 

  • James DE, Kraegen EW (1984) The effect of exercise training on glycogen, glycogen synthase and phosphorylase in muscle and liver. Eur J Appl Physiol Occup Physiol 52:276–281

    Article  CAS  PubMed  Google Scholar 

  • Jenkins NT, Padilla J, Arce-Esquivel AA, Bayless DS, Martin JS, Leidy HJ, Booth FW, Rector RS, Laughlin MH (2012) Effects of endurance exercise training, metformin, and their combination on adipose tissue leptin and IL-10 secretion in OLETF rats. J Appl Physiol 113:1873–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juel C, Holten MK, Dela F (2004) Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. J Physiol 556:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Biessels GJ, Urban IJGW (1999) Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience 90:737–745

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka long-Evans Tokushima fatty (OLETF) strain. Diabetes 41:1422–1428

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka R, Fujikawa T, Miyaki T, Matsumura S, Fushiki T, Inoue K (2010) Increased noradrenergic activity in the ventromedial hypothalamus during treadmill running in rats. J Nutr Sci Vitaminol (Tokyo) 56:185–190

    Article  CAS  Google Scholar 

  • Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Chang H, Park JY, Kim SY, Choi KM, Song W (2011) Exercise training improves basal blood glucose metabolism with no changes of cytosolic inhibitor κB kinase or c-Jun N-terminal kinase activation in skeletal muscle of Otsuka long-Evans Tokushima fatty rats. Exp Physiol 96:689–698

    Article  CAS  PubMed  Google Scholar 

  • Liu YF, Chen HI, Wu CL, Kuo YM, Yu L, Huang AM, Sen WF, Chuang JI, Jen CJ (2009) Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587:3221–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354:1155–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci U S A 78:6535–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manschot SM, Brands AMA, van der Grond J, Kessels RPC, Algra A, Kappelle LJ, Biessels GJ (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H (2011) Brain glycogen decreases during prolonged exercise. J Physiol 589:3383–3393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Ishikawa T, Ito H, Okamoto M, Inoue K, Lee MC, Fujikawa T, Ichitani Y, Kawanaka K, Soya H (2012) Brain glycogen supercompensation following exhaustive exercise. J Physiol 590:607–616

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Soya S, Kawanaka K, Soya H (2015) Brain glycogen decreases during intense exercise without hypoglycemia: the possible involvement of serotonin. Neurochem Res 40:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Mccrimmon RJ, Phd R, Mccrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379:2291–2299

    Article  PubMed  Google Scholar 

  • Mu J, Brozinick JT, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 6:e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikooie R, Rajabi H, Gharakhanlu R, Atabi F, Omidfar K, Aveseh M, Larijani B (2013) Exercise-induced changes of MCT1 in cardiac and skeletal muscles of diabetic rats induced by high-fat diet and STZ. J Physiol Biochem 69:865–877

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman DJ, Karlsson HKR, McQuaid S, Yousif O, Rahman Y, Gasparro D, Glund S, Chibalin AV, Zierath JR, Nolan JJ (2006) Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49:2983–2992

    Article  PubMed  CAS  Google Scholar 

  • Ohiwa N, Saito T, Chang H, Omori T, Fujikawa T, Asada T, Soya H (2006) Activation of A1 and A2 noradrenergic neurons in response to running in the rat. Neurosci Lett 395:46–50

    Article  CAS  PubMed  Google Scholar 

  • Ohiwa N, Chang H, Saito T, Onaka T, Fujikawa T, Soya H (2007) Possible inhibitory role of prolactin-releasing peptide for ACTH release associated with running stress. Am J Physiol Regul Integr Comp Physiol 292:R497–R504

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Pellegri G, Bittar P, Charnay Y, Bouras C, Martin J, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Hoyer S (1993) Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 11:477–483

    Article  CAS  PubMed  Google Scholar 

  • Pouwer F, Beekman ATF, Nijpels G, Dekker JM, Snoek FJ, Kostense PJ, Heine RJ, Deeg DJH (2003) Rates and risks for co-morbid depression in patients with type 2 diabetes mellitus: results from a community-based study. Diabetologia 46:892–898

    Article  CAS  PubMed  Google Scholar 

  • Ruchti E, Roach PJ, DePaoli-Roach AA, Magistretti PJ, Allaman I (2016) Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes. IBRO Rep 1:46–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T, Soya H (2004) Delineation of responsive AVP-containing neurons to running stress in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 286:R484–R490

    Article  CAS  PubMed  Google Scholar 

  • Secher NH, Seifert T, Van Lieshout JJ (2008) Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol 104:306–314

    Article  CAS  PubMed  Google Scholar 

  • Shearer J, Ross KD, Hughey CC, Johnsen VL, Hittel DS, Severson DL (2011) Exercise training does not correct abnormal cardiac glycogen accumulation in the db/db mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab 301:E31–E39

    Article  CAS  PubMed  Google Scholar 

  • Shima T, Jesmin S, Matsui T, Soya M, Soya H (2016a) Differential effects of type 2 diabetes on brain glycometabolism in rats: focus on glycogen and monocarboxylate transporter 2. J Physiol Sci 68:69–75

    Article  PubMed  CAS  Google Scholar 

  • Shima T, Takashi M, Jesmin S, Okamoto M, Soya M, Inoue K, Liu Y-F, Torres-Aleman I, McEwen BS, Soya H (2016b) Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes. Diabetologia 60:597–606

    Article  PubMed  CAS  Google Scholar 

  • Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2010) Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 30:1527–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2012) Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int 60:267–275

    Article  CAS  PubMed  Google Scholar 

  • Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P, Jennings A, Jaffey J (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Ann Intern Med 147:357–369

    Article  PubMed  Google Scholar 

  • Soares E, Prediger RD, Nunes S, Castro AA, Viana SD, Lemos C, De Souza CM, Agostinho P, Cunha RA, Carvalho E, Fontes Ribeiro CA, Reis F, Pereira FC (2013) Spatial memory impairments in a prediabetic rat model. Neuroscience 250:565–577

    Article  CAS  PubMed  Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233

    Article  CAS  PubMed  Google Scholar 

  • Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12:4923–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soya H, Mukai A, Deocaris CC, Ohiwa N, Chang H, Nishijima T, Fujikawa T, Togashi K, Saito T (2007a) Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: establishment of a minimum running stress (MRS) rat model. Neurosci Res 58:341–348

    Article  CAS  PubMed  Google Scholar 

  • Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS, Nishijima T (2007b) BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun 358:961–967

    Article  CAS  PubMed  Google Scholar 

  • Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, Eagan PA, Jenkinson CP, Cersosimo E, DeFronzo RA, Sakamoto K, Musi N (2007) Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 56:836–848

    Article  CAS  PubMed  Google Scholar 

  • Stranahan AM (2015) Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 309:125–139

    Article  CAS  PubMed  Google Scholar 

  • Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler G, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suge R, Shimazu T, Hasegawa H, Inoue I, Hayashibe H, Nagasaka H, Araki N, Katayama S, Nomura M, Watanabe SI (2012) Cerebral antioxidant enzyme increase associated with learning deficit in type 2 diabetes rats. Brain Res 1481:97–106

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson R, Sagar S, Sharp F (1989) Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11:24–28

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: Demonstration by autoradiography. Neuroscience 51:451–461

    Article  CAS  PubMed  Google Scholar 

  • Tekkök S, Krnjevic K (1999) Diabetes mellitus preserves synaptic plasticity in hippocampal slices from middle-age rats. Neuroscience 91:185–191

    Article  PubMed  Google Scholar 

  • Umegaki H, Hayashi T, Nomura H, Yanagawa M, Nonogaki Z, Nakshima H, Kuzuya M (2013) Cognitive dysfunction: an emerging concept of a new diabetic complication in the elderly. Geriatr Gerontol Int 13:28–34

    Article  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  • Vissing J, Andersen M, Diemer NH (1996) Exercise-induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 16:729–736

    Article  CAS  PubMed  Google Scholar 

  • Whitmer RA (2007) Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep 7:373–380

    Article  CAS  PubMed  Google Scholar 

  • Winder WW, Yang HT, Jaussi AW, Hopkins CR (1987) Epinephrine, glucose, and lactate infusion in exercising adrenodemedullated rats. J Appl Physiol 62:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Witting A, Chen L, Cudaback E, Straiker A, Walter L, Rickman B, Moller T, Brosnan C, Stella N (2006) Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci 103:6362–6367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ruchti E, Petit J-M, Jourdain P, Grenningloh G, Allaman I, Magistretti PJ (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A 111:12228–12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Soya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soya, M., Jesmin, S., Shima, T., Matsui, T., Soya, H. (2019). Dysregulation of Glycogen Metabolism with Concomitant Spatial Memory Dysfunction in Type 2 Diabetes: Potential Beneficial Effects of Chronic Exercise. In: DiNuzzo, M., Schousboe, A. (eds) Brain Glycogen Metabolism. Advances in Neurobiology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-27480-1_13

Download citation

Publish with us

Policies and ethics