Skip to main content

Role of Brain Glycogen During Ischemia, Aging and Cell-to-Cell Interactions

  • Chapter
  • First Online:
Brain Glycogen Metabolism

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 23))

Abstract

The astrocyte-neuron lactate transfer shuttle (ANLS) is one of the important metabolic systems that provides a physiological infrastructure for glia-neuronal interactions where specialized architectural organization supports the function. Perivascular astrocyte end-feet take up glucose via glucose transporter 1 to actively regulate glycogen stores, such that high ambient glucose upregulates glycogen and low levels of glucose deplete glycogen stores. A rapid breakdown of glycogen into lactate during increased neuronal activity or low glucose conditions becomes essential for maintaining axon function. However, it fails to benefit axon function during an ischemic episode in white matter (WM). Aging causes a remarkable change in astrocyte architecture characterized by thicker, larger processes oriented parallel to axons, as opposed to vertically-transposing processes. Subsequently, aging axons become more vulnerable to depleted glycogen, although aging axons can use lactate as efficiently as young axons. Lactate equally supports function during aglycemia in corpus callosum (CC), which consists of a mixture of myelinated and unmyelinated axons. Moreover, axon function in CC shows greater resilience to a lack of glucose compared to optic nerve, although both WM tracts show identical recovery after aglycemic injury. Interestingly, emerging evidence implies that a lactate transport system is not exclusive to astrocytes, as oligodendrocytes support the axons they myelinate, suggesting another metabolic coupling pathway in WM. Future studies are expected to unravel the details of oligodendrocyte-axon lactate metabolic coupling to establish that all WM components metabolically cooperate and that lactate may be the universal metabolite to sustain central nervous system function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhafiz AH, Rodriguez-manas L, Morley JE, Sinclair AJ (2015) Hypoglycemia in older people—a less well recognized risk factor for frailty. Aging Dis 6:156–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Alessandri B, Landolt H, Langemann H, Gregorin J, Hall J, Gratzl O (1996) Application of glutamate in the cortex of rats: a microdialysis study. Acta Neurochir Suppl 67:6–12

    Article  CAS  PubMed  Google Scholar 

  • Amaral AI, Meisingset TW, Kotter MR, Sonnewald U (2013) Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front Endocrinol 4:54

    Article  CAS  Google Scholar 

  • Arai K, Lok J, Guo S, Hayakawa K, Xing C, Lo EH (2011) Cellular mechanisms of neurovascular damage and repair after stroke. J Child Neurol 26:1193–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Auer RN (1986) Progress review: hypoglycemic brain damage. Stroke 17:699–708

    Article  CAS  PubMed  Google Scholar 

  • Baltan S (2006) Surviving anoxia: a tale of two white matter tracts. Crit Rev Neurobiol 18:95–103

    Article  CAS  PubMed  Google Scholar 

  • Baltan S (2014) Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. Adv Neurobiol 11:151–170

    Article  PubMed  Google Scholar 

  • Baltan S, Besancon EF, Mbow B, Ye Z, Hamner MA, Ransom BR (2008) White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci 28:1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JA, Waxman SG (1988) The perinodal astrocyte. Glia 1:169–183

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Baltan Tekkök S, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol 549(2):501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AM, Evans RD, Black J, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72:406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    Article  CAS  PubMed  Google Scholar 

  • Chih C, Lipton P, Roberts EL (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24:573–578

    Article  CAS  PubMed  Google Scholar 

  • Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115:E1896–E1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  CAS  PubMed  Google Scholar 

  • Drulis-Fajdasz D, Gizak A, Wojtowicz T, Wisniewski JR, Rakus D (2018) Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia 66:1481–1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Frier BM, Fisher BM (1999) Hypoglycemia in clinical diabetes. Wiley, New York

    Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    Article  CAS  PubMed  Google Scholar 

  • Hamanaka G, Ohtomo R, Takase H, Lok J, Arai K (2018) Role of oligodendrocyte-neurovascular unit in white matter repair. Neurosci Lett 684:175–180

    Article  CAS  PubMed  Google Scholar 

  • Harris JJ, Attwell D (2012) The energetics of CNS white matter. J Neurosci 32:356–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henn FA, Haljamae H, Hamberger A (1972) Glial cell function: active control of extracellular K+ concentration. Brain Res 43:437–443

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  CAS  PubMed  Google Scholar 

  • Honegger P, Pardo B (1999) Separate neuronal and glial Na+, K+-ATPase isoforms regulate glucose utilization in response to membrane depolarization and elevated extracellular potassium. J Cereb Blood Flow Metab 19:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Korol DL, Gold PE (1998) Glucose, memory, and aging. Am J Clin Nutr 67:764S–771S

    Article  CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholis JG (1964) Glial cells in the central nervous system of the leech; their membrane potential and potassium content. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 248:216–222

    CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Ergeb Physiol Biol Chem Exp Pharmakol 57:1–90

    Article  CAS  Google Scholar 

  • Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320

    Article  CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9:917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders. Ann N Y Acad Sci 777:380–387

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Sorg O, Naichen Y, Pellerin L, De Rham S, Martin JL (1994) Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol Biochem 17:168–171

    CAS  PubMed  Google Scholar 

  • Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporter proteins in brain. FASEB J 8:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Moody DM, Bell MA, Challa VR (1990) Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol 11:431–439

    CAS  PubMed  Google Scholar 

  • Munzer JS, Daly SE, Jewell-Motz EA, Lingrel JB, Blostein R (1994) Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J Biol Chem 269:16668–16676

    CAS  PubMed  Google Scholar 

  • Nave KA (2010a) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010b) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiat 71:582–584

    Article  Google Scholar 

  • Nishizaki T, Yamauchi R, Tanimoto M, Okada Y (1988) Effects of temperature on the oxygen consumption in thin slices from different brain regions. Neurosci Lett 86:301–305

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Bonvento G, Chatton JY, Pierre K, Magistretti PJ (2002) Role of neuron-glia interaction in the regulation of brain glucose utilization. Diabetes Nutr Metab 15:268–273. discussion 273

    CAS  PubMed  Google Scholar 

  • Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem 85:73–81

    Article  CAS  PubMed  Google Scholar 

  • Phelps CH (1972) Barbiturate-induced glycogen accumulation in brain. An electron microscopic study. Brain Res 39:225–234

    Article  CAS  PubMed  Google Scholar 

  • Ransom BR, Orkand RK (1996) Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci 19:352–358

    Article  CAS  PubMed  Google Scholar 

  • Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res 66:790–794

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Abarca LI, Tabernero A, Medina JM (2001) Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36:321–329

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Vannucci SJ, Maher F (1994) Glucose transporters in mammalian brain. Biochem Soc Trans 22:671–675

    Article  CAS  PubMed  Google Scholar 

  • Soreq L, UK Brain Expression Consortium, North American Brain Expression Consortium, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, Patani R, Ule J (2017) Major shifts in glial regional identity are a transcriptional Hallmark of human brain aging. Cell Rep 18:557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza DG, Bellaver B, Raupp GS, Souza DO, Quincozes-Santos A (2015) Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem Int 90:93–97

    Article  CAS  PubMed  Google Scholar 

  • Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S (2016) Age-related changes in axonal and mitochondrial ultrastructure and function in white matter. J Neurosci 36:9990–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13:162–169

    Article  CAS  PubMed  Google Scholar 

  • Tekkok SB, Brown AM, Ransom BR (2003) Axon function persists during anoxia in mammalian white matter. J Cereb Blood Flow Metab 23:1340–1347

    Article  PubMed  Google Scholar 

  • Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652

    Article  CAS  PubMed  Google Scholar 

  • Tekkok SB, Ye Z, Ransom BR (2007) Excitotoxic mechanisms of ischemic injury in myelinated white matter. J Cereb Blood Flow Metab 27:1540–1552

    Article  PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Veuthey AL, Saravelos SG, Perrottet P, Tsoupras G (1994) Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina. J Neurosci 14:1339–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    Article  CAS  PubMed  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeppenfeld DM, Simon M, Haswell JD, D'abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from National Institute of Aging (NIA) to SB and NINDS to SB and SB, as well as a gift from Rose Mary Kubik. Selva Baltan has previously published as Selva Tekkök. The authors thank Dr. Chris Nelson, medical writer, for his help editing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selva Baltan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastian, C. et al. (2019). Role of Brain Glycogen During Ischemia, Aging and Cell-to-Cell Interactions. In: DiNuzzo, M., Schousboe, A. (eds) Brain Glycogen Metabolism. Advances in Neurobiology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-27480-1_12

Download citation

Publish with us

Policies and ethics