Skip to main content

Glycogen in Astrocytes and Neurons: Physiological and Pathological Aspects

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 23))

Abstract

Brain glycogen is stored mainly in astrocytes, although neurons also have an active glycogen metabolism. Glycogen has gained relevance as a key player in brain function. In this regard, genetically modified animals have allowed researchers to unravel new roles of this polysaccharide in the brain. Remarkably, mice in which glycogen synthase is abolished in the brain, and thus devoid of brain glycogen, are viable, thereby indicating that the polysaccharide in this organ is not a requirement for survival. While there was growing evidence supporting a role of glycogen in learning and memory, these animals have now confirmed that glycogen participates in these two processes.

The association of epilepsy with brain glycogen has also attracted attention. Analysis of genetically modified mice indicates that the relation between brain glycogen and epilepsy is complex. While the formation of glycogen aggregates clearly underlies epilepsy, as in Lafora Disease (LD), the absence of glycogen also favors the occurrence of seizures.

LD is a rare genetic condition that affects children. It is characterized by epileptic seizures and neurodegeneration, and it develops rapidly until finally causing death. Research into this disease has unveiled new aspects of glycogen metabolism. Animal models of LD accumulate polyglucosan bodies formed by aberrant glycogen aggregates, called Lafora bodies (LBs). The abolition of glycogen synthase (GS) prevents the formation of LBs and the development of LD, thereby indicating that glycogen accumulation underlies this disease and the associated symptoms, and thus establishing a clear relation between the accumulation of glycogen aggregates and the incidence of seizures.

Although it was initially accepted that LBs were essentially neuronal, it is now evident that astrocytes also accumulate polyglucosan aggregates in LD. However, the appearance and composition of these deposits differs from that observed in neurons. Of note, the astrocytic aggregates in LD models show remarkable similarities with corpora amylacea (CA), a type of polyglucosan aggregate observed in the brains of aged mice and humans. The abolition of GS in mice also impedes the formation of CA with age and at the same time prevents the formation of a number of protein aggregates associated with aging. Therefore CA may play a role in age-related neurological decline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ANLS:

Astrocyte-neuron lactate shuttle

APBD:

Adult polyglucosan body disease

CAL:

Corpora amylacea-like

DAB:

1,4-dideoxy-1,4-imino-d-arabinitol

EPM2:

Progressive myoclonic epilepsy 2 GBE Glycogen branching enzyme

GP:

Glycogen phosphorylase

GS:

Glycogen synthase

HFS:

High-frequency stimulus

LBs:

Lafora bodies

LD:

Lafora disease

LFP:

Local field potential

LGS:

Liver glycogen synthase

LTP:

Long-term potentiation

MGS:

Muscle glycogen synthase

PGBs:

Polyglucosan bodies

PP1:

Protein phosphatase 1

PTG:

Protein targeting to glycogen

SAMP8:

Senescence accelerated mouse prone 8

References

  • Alberini CM, Cruz E et al (2018) Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 66(6):1244–1262

    Article  PubMed  Google Scholar 

  • Auge E, Cabezon I et al (2017) New perspectives on corpora amylacea in the human brain. Sci Rep 7:41807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auge E, Pelegri C et al (2018) Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia 66:2094–2107

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard-Helary K, Lapouble E et al (2000) Correlation between brain glycogen and convulsive state in mice submitted to methionine sulfoximine. Life Sci 67(14):1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Binder CJ (2010) Natural IgM antibodies against oxidation-specific epitopes. J Clin Immunol 30(Suppl 1):S56–S60

    Article  CAS  PubMed  Google Scholar 

  • Bouskila M, Hunter RW et al (2010) Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab 12(5):456–466

    Article  CAS  PubMed  Google Scholar 

  • Bruno C, Servidei S et al (1993) Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol 33(1):88–93

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29(2–3):265–295

    Article  CAS  PubMed  Google Scholar 

  • Cisse S, Schipper HM (1995) Experimental induction of corpora amylacea-like inclusions in rat astroglia. Neuropathol Appl Neurobiol 21(5):423–431

    Article  CAS  PubMed  Google Scholar 

  • Criado O, Aguado C et al (2012) Lafora bodies and neurological defects in Malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 21(7):1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Dainese L, Monin ML et al (2013) Abnormal glycogen in astrocytes is sufficient to cause adult polyglucosan body disease. Gene 515(2):376–379

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard MK, Madsen FF et al (2007) High glycogen levels in the hippocampus of patients with epilepsy. J Cereb Blood Flow Metab 27(6):1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Del Valle J, Duran-Vilaregut J et al (2010) Early amyloid accumulation in the hippocampus of SAMP8 mice. J Alzheimers Dis 19(4):1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Escueta AV (2007) Advances in lafora progressive myoclonus epilepsy. Curr Neurol Neurosci Rep 7(5):428–433

    Article  CAS  PubMed  Google Scholar 

  • DePaoli-Roach AA, Tagliabracci VS et al (2010) Genetic depletion of the malin E3 ubiquitin ligase in mice leads to lafora bodies and the accumulation of insoluble laforin. J Biol Chem 285(33):25372–25381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiNuzzo M, Mangia S et al (2015) Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis 30(1):307–316

    Article  CAS  PubMed  Google Scholar 

  • Duran J, Tevy MF et al (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4(8):719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran J, Saez I et al (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran J, Gruart A et al (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23(12):3147–3156

    Article  CAS  PubMed  Google Scholar 

  • Duran J, Gruart A et al (2019) Lack of Neuronal Glycogen Impairs Memory Formation and Learning-Dependent Synaptic Plasticity in Mice. Frontiers in Cellular Neuroscience 13

    Google Scholar 

  • Ganesh S, Delgado-Escueta AV et al (2002) Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 11(11):1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Gayarre J, Duran-Trio L et al (2014) The phosphatase activity of laforin is dispensable to rescue Epm2a−/− mice from Lafora disease. Brain 137(Pt 3):806–818

    Article  PubMed  Google Scholar 

  • Gentry MS, Dixon JE et al (2009) Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci 34(12):628–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry MS, Guinovart JJ et al (2018) Lafora disease offers a unique window into neuronal glycogen metabolism. J Biol Chem 293(19):7117–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs ME (2015) Role of Glycogenolysis in memory and learning: regulation by noradrenaline, Serotonin and ATP. Front Integr Neurosci 9:70

    PubMed  Google Scholar 

  • Gibbs ME, Anderson DG et al (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222

    Article  PubMed  Google Scholar 

  • Goldberg ND, O’Toole AG (1969) The properties of glycogen synthetase and regulation of glycogen biosynthesis in rat brain. J Biol Chem 244(11):3053–3061

    CAS  PubMed  Google Scholar 

  • Gruart A, Munoz MD et al (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26(4):1077–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertz L, Chen Y (2018) Glycogenolysis, an astrocyte-specific reaction, is essential for both astrocytic and neuronal activities involved in learning. Neuroscience 370:27–36

    Article  CAS  PubMed  Google Scholar 

  • Hevor TK, Delorme P et al (1985) Glycogen content and fructose-1, 6-biphosphatase activity in methionine sulfoximine epileptogenic mouse brain and liver after protein synthesis inhibition. Neuropathol Appl Neurobiol 11(2):129–139

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC et al (1994a) Age-related fibrillar deposits in brains of C57BL/6 mice. A review of localization, staining characteristics, and strain specificity. Mol Neurobiol 9(1–3):125–133

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC et al (1994b) Age-related deposition of glia-associated fibrillar material in brains of C57BL/6 mice. Neuroscience 60(4):875–889

    Article  CAS  PubMed  Google Scholar 

  • Kaslow HR, Lesikar DD et al (1985) L-type glycogen synthase. Tissue distribution and electrophoretic mobility. J Biol Chem 260(18):9953–9956

    CAS  PubMed  Google Scholar 

  • Knecht E, Criado-Garcia O et al (2012) Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora disease. Autophagy 8(4):701–703

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Ye L et al (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Gonzalez I, Viana R et al (2017) Inflammation in Lafora disease: evolution with disease progression in Laforin and Malin Knock-out mouse models. Mol Neurobiol 54(5):3119–3130

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ramos JC, Duran J et al (2015) Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy. Front Cell Neurosci 9:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lossos A, Meiner Z et al (1998) Adult polyglucosan body disease in Ashkenazi Jewish patients carrying the Tyr329Ser mutation in the glycogen-branching enzyme gene. Ann Neurol 44(6):867–872

    Article  CAS  PubMed  Google Scholar 

  • Machado-Salas J, Avila-Costa MR et al (2012) Ontogeny of Lafora bodies and neurocytoskeleton changes in Laforin-deficient mice. Exp Neurol 236(1):131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancardi GL, Schenone A et al (1985) Polyglucosan bodies in the sural nerve of a diabetic patient with polyneuropathy. Acta Neuropathol 66(1):83–86

    Article  CAS  PubMed  Google Scholar 

  • Manich G, Cabezon I et al (2016) Periodic acid-Schiff granules in the brain of aged mice: from amyloid aggregates to degenerative structures containing neo-epitopes. Ageing Res Rev 27:42–55

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL Jr, Derrick BE (1996) Long-term potentiation and learning. Annu Rev Psychol 47:173–203

    Article  PubMed  Google Scholar 

  • Moore SA, Peterson RG et al (1981) Glycogen accumulation in tibial nerves of experimentally diabetic and aging control rats. J Neurol Sci 52(2–3):289–303

    Article  CAS  PubMed  Google Scholar 

  • Nitschke F, Sullivan MA et al (2017) Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Mol Med 9(7):906–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke F, Ahonen SJ et al (2018) Lafora disease - from pathogenesis to treatment strategies. Nat Rev Neurol 14(10):606–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oe Y, Baba O et al (2016) Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 64(9):1532–1545

    Article  PubMed  PubMed Central  Google Scholar 

  • Orloff MJ, Greenleaf G et al (1990) Reversal of diabetic somatic neuropathy by whole-pancreas transplantation. Surgery 108(2):179–189; discussion 189–190

    CAS  PubMed  Google Scholar 

  • Osorio-Paz I, Sanchez-Chavez G et al (2012) Control of glycogen content in retina: allosteric regulation of glycogen synthase. PLoS One 7(2):e30822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson BA, Turnbull J et al (2013) Inhibiting glycogen synthesis prevents lafora disease in a mouse model. In: Ann Neurol, vol 74, pp 297–300

    Google Scholar 

  • Phelps CH (1975) An ultrastructural study of methionine sulphoximine-induced glycogen accumulation in astrocytes of the mouse cerebral cortex. J Neurocytol 4(4):479–490

    Article  CAS  PubMed  Google Scholar 

  • Pirici I, Margaritescu C et al (2014) Corpora amylacea in the brain form highly branched three-dimensional lattices. Romanian J Morphol Embryol 55(3 Suppl):1071–1077

    Google Scholar 

  • Powell H, Knox D et al (1977) Alloxan diabetic neuropathy: electron microscopic studies. Neurology 27(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Raben N, Danon M et al (2001) Surprises of genetic engineering: a possible model of polyglucosan body disease. Neurology 56(12):1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Roach PJ, Cheng C et al (1998) Novel aspects of the regulation of glycogen storage. J Basic Clin Physiol Pharmacol 9(2–4):139–151

    CAS  PubMed  Google Scholar 

  • Rohn TT (2015) Corpora amylacea in neurodegenerative diseases: cause or effect? Int J Neurol Neurother 2(3):031

    PubMed  PubMed Central  Google Scholar 

  • Rubio-Villena C, Viana R et al (2018) Astrocytes: new players in progressive myoclonus epilepsy of Lafora type. Hum Mol Genet 27(7):1290–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungger-Brandle E, Kolb H et al (1996) Histochemical demonstration of glycogen in neurons of the cat retina. Invest Ophthalmol Vis Sci 37(5):702–715

    CAS  PubMed  Google Scholar 

  • Saez I, Duran J et al (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Chavez G, Hernandez-Berrones J et al (2008) Effect of diabetes on glycogen metabolism in rat retina. Neurochem Res 33(7):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Simo R, Hernandez C et al (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Sinadinos C, Valles-Ortega J et al (2014) Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13(5):935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhrao SK, Neal JW et al (1993) Corpora amylacea could be an indicator of neurodegeneration. Neuropathol Appl Neurobiol 19(3):269–276

    Article  CAS  PubMed  Google Scholar 

  • Sosula L, Beaumont P et al (1974) Glycogen accumulation in retinal neurons and glial cells of streptozotocin-diabetic rats. Quantitative electron microscopy. Diabetes 23(3):221–231

    Article  CAS  PubMed  Google Scholar 

  • Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34(4):639–659

    Article  CAS  PubMed  Google Scholar 

  • Turnbull J, DePaoli-Roach AA et al (2011) PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. PLoS Genet 7(4):e1002037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valles-Ortega J, Duran J et al (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3(11):667–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilchez D, Ros S et al (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10(11):1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Vincent AM, Feldman EL (2004) New insights into the mechanisms of diabetic neuropathy. Rev Endocr Metab Disord 5(3):227–236

    Article  CAS  PubMed  Google Scholar 

  • Waitt AE, Reed L et al (2017) Emerging roles for glycogen in the CNS. Front Mol Neurosci 10:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walls AB, Eyjolfsson EM et al (2014) A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo. J Cereb Blood Flow Metab 34(8):1340–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Wilamowitz-Moellendorff A, Hunter RW et al (2013) Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes 62(12):4070–4082

    Article  CAS  Google Scholar 

  • Wilhelmus MM, Verhaar R et al (2011) Novel role of transglutaminase 1 in corpora amylacea formation? Neurobiol Aging 32(5):845–856

    Article  CAS  PubMed  Google Scholar 

  • Yagihashi S, Matsunaga M (1979) Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J Exp Med 129(4):357–366

    Article  CAS  PubMed  Google Scholar 

  • Zotova EG, Schaumburg HH et al (2008) Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study. Exp Neurol 213(2):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan J. Guinovart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duran, J., Gruart, A., López-Ramos, J.C., Delgado-García, J.M., Guinovart, J.J. (2019). Glycogen in Astrocytes and Neurons: Physiological and Pathological Aspects. In: DiNuzzo, M., Schousboe, A. (eds) Brain Glycogen Metabolism. Advances in Neurobiology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-27480-1_10

Download citation

Publish with us

Policies and ethics