Skip to main content

Dynamic Clustering of PI-Hubs Based on Forecasting Demand in Physical Internet Context

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2019)

Abstract

This paper proposes an approach to reduce the complexity of hub’s connection. The approach is based on the concept of dynamic clustering for the retailers’ demand, solving retailers to PI-hubs’ clusters assignment problem, and then tackling a routing problem for each cluster. The dynamic clustering is based on a forecasted demand calculated from learning algorithm, Long Short-Term Memory (LSTM) Recurrent Neural Network. After implementing the clustering method, a Mixed Integer Linear Programming model is used to solve the problem of assigning retailers to clusters. Besides, this paper evaluates the clustering performance using Hopkins statistic and Silhouette width scores. The experiments and the results show that the dynamic clustering by using K-Medoid models provide a better performance and reduce the complexity of the transportation problem between PI-Hubs and retailers in the context of the Physical Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montreuil, B., Meller, R.D., Ballot, E.: Physical Internet foundations. IFAC (2013)

    Google Scholar 

  2. Ballot, E., Gobet, O., Montreuil, B.: Physical internet enabled open hub network design for distributed networked operations (2012)

    Chapter  Google Scholar 

  3. Montreuil, B.: Toward a physical internet: meeting the global logistics sustainability grand challenge. Logist. Res. 3, 71–87 (2011)

    Article  Google Scholar 

  4. Crainic, T.G., Montreuil, B.: Physical internet enabled hyperconnected city logistics. Transp. Res. Proc. 12, 383–398 (2016)

    Article  Google Scholar 

  5. Caballini, C., Paolucci, M., Sacone, S., Ursavas, E.: Towards the physical internet paradigm: a model for transportation planning in complex road networks with empty return optimization. Lecture Notes Computer Science, LNCS, vol. 10572, pp. 452–467 (2017)

    Google Scholar 

  6. Chen, F., Drezner, Z., Ryan, J.K., Simchi-levi, D., Chen, F., Drezner, Z., Ryan, J.K.: The impact of forecasting. Lead Times Inf. 46, 436–443 (2016)

    MATH  Google Scholar 

  7. Supattana, N.: Steel price index forecasting using ARIMA and ARIMAX model (2014). http://econ.nida.ac.th/index.php?option=com_content&view=article&id=3021%3Aarima-arimax-steel-price-index-forecasting-using-arima-and-arimax-model-mfe2557&catid=129%3Astudent-independent-study&Itemid=207&lang=th

  8. Guanghui, W.A.N.G.: Demand forecasting of supply chain based on support vector regression method. Proc. Eng. 29, 280–284 (2012)

    Article  Google Scholar 

  9. Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J.: Energy aware consolidation algorithm based on k-nearest neighbor regression for cloud data centers. In: Proceedings of 2013 IEEE/ACM 6th International Conference on Cloud Computing, UCC 2013, pp. 256–259 (2013)

    Google Scholar 

  10. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160, 501–514 (2005)

    Article  Google Scholar 

  11. Carbonneau, R., Laframboise, K., Vahidov, R.: Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res. 184, 1140–1154 (2008)

    Article  Google Scholar 

  12. Navya Nanaiah, B.: Forecasting of futures trading volume of selected agricultural commodities using neural networks (2011)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  14. Chen, K., Zhou, Y., Dai, F.: A LSTM-based method for stock returns prediction: a case study of China stock market. In: Proceedings of 2015 IEEE International Conference on Big Data, IEEE Big Data 2015. pp. 2823–2824 (2015)

    Google Scholar 

  15. Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P., Loos, P.: Time series classification using deep learning for process planning: a case from the process industry. Proc. Comput. Sci. 114, 242–249 (2017)

    Article  Google Scholar 

  16. Kantasa-ard, A., Bekrar, A., Ait el Cadi, A., Sallez, Y.: Artificial intelligence for forecasting in supply chain management: a case study of white sugar consumption rate in Thailand. In: 9th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2019 Berlin, IFAC (2019)

    Google Scholar 

  17. Nananukul, N.: Clustering model and algorithm for production inventory and distribution problem. Appl. Math. Model. 37, 9846–9857 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kassambara, A.: Types of Clustering Methods: Overview and Quick Start R Code. https://www.datanovia.com/en/blog/types-of-clustering-methods-overview-and-quick-start-r-code/

  19. Murray, P.W., Agard, B., Barajas, M.A.: Forecasting supply chain demand by clustering customers. IFAC-PapersOnLine 28, 1834–1839 (2015)

    Article  Google Scholar 

  20. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability (1967)

    Google Scholar 

  21. Chang, H.W., Tai, Y.C., Hsu, J.Y.J.: Context-aware taxi demand hotspots prediction. Int. J. Bus. Intell. Data Min. 5, 3 (2009)

    Article  Google Scholar 

  22. Liao, S.H., Chen, Y.J., Deng, M.Y.: Mining customer knowledge for tourism new product development and customer relationship management. Expert Syst. Appl. 37, 4212–4223 (2010)

    Article  Google Scholar 

  23. Banerjee, A., Dave, R.N.: Validating clusters using the Hopkins statistic. In: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542), pp. 149–153. IEEE, Budapest, Hungary (2004)

    Google Scholar 

  24. Pasini, G.: Principal component analysis for stock portfolio management. Int. J. Pure Appl. Math. 115, 153–167 (2017)

    Article  Google Scholar 

  25. Montoya-Torres, J.R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79, 115–129 (2015)

    Article  Google Scholar 

  26. Kek, A.G.H., Cheu, R.L., Meng, Q.: Distance-constrained capacitated vehicle routing problems with flexible assignment of start and end depots. Math. Comput. Model. 47, 140–152 (2008)

    Article  MathSciNet  Google Scholar 

  27. Cornillier, F., Boctor, F., Renaud, J.: Heuristics for the multi-depot petrol station replenishment problem with time windows. Eur. J. Oper. Res. 220, 361–369 (2012)

    Article  Google Scholar 

  28. Montoya-Torres, J.R., Muñoz-Villamizar, A., Vega-Mejía, C.A.: On the impact of collaborative strategies for goods delivery in city logistics. Prod. Plan. Control 27, 443–455 (2016)

    Article  Google Scholar 

  29. Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J.M.A., Brunese, P.A.: Multiple traveling salesman problem with drones: Mathematical model and heuristic approach. Comput. Ind. Eng. 129, 14–30 (2019)

    Article  Google Scholar 

  30. Malika, C., Nadia, G., Boiteau, V., Niknafs, A.: NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirut Kantasa-Ard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kantasa-Ard, A., Nouiri, M., Bekrar, A., Ait El Cadi, A., Sallez, Y. (2020). Dynamic Clustering of PI-Hubs Based on Forecasting Demand in Physical Internet Context. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-030-27477-1_3

Download citation

Publish with us

Policies and ethics