Skip to main content

Multi Agent System for Machine Learning Under Uncertainty in Cyber Physical Manufacturing System

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 853))

Abstract

Recent advancement in predictive machine learning has led to its application in various use cases in manufacturing. Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it. While accuracy is important, focusing primarily on it poses an overfitting danger, exposing manufacturers to risk, ultimately hindering the adoption of these techniques. In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty in a cyber-physical manufacturing system (CPMS) scenario. Then, we propose a multi-agent system architecture which leverages probabilistic machine learning as a means of achieving such criteria. We propose possible scenarios for which our architecture is useful and discuss future work. Experimentally, we implement Bayesian Neural Networks for multi-tasks classification on a public dataset for the real-time condition monitoring of a hydraulic system and demonstrate the usefulness of the system by evaluating the probability of a prediction being accurate given its uncertainty. We deploy these models using our proposed agent-based framework and integrate web visualisation to demonstrate its real-time feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code are available at https://github.com/bangxiangyong/agentMet4FoF.

References

  1. Wang, J., Ma, Y., Zhang, L., Gao, R.X., Dazhong, W.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018)

    Article  Google Scholar 

  2. Lee, J., Kao, H.-A., Ardakani, H.D., Siegel, D.: Intelligent factory agents with predictive analytics for asset management. In: Industrial Agents, pp. 341–360. Elsevier (2015)

    Google Scholar 

  3. Zorrilla, M., García-Saiz, D.: A service oriented architecture to provide data mining services for non-expert data miners. Decis. Support Syst. 55(1), 399–411 (2013)

    Article  Google Scholar 

  4. Kusiak, A.: Smart manufacturing must embrace big data. Nat. News 544(7648), 23 (2017)

    Article  Google Scholar 

  5. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452 (2015)

    Article  Google Scholar 

  6. Shridhar, K., Laumann, F., Liwicki, M.: A comprehensive guide to Bayesian convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731 (2019)

  7. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158 (2015)

  8. Damianou, A., Lawrence, N.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215 (2013)

    Google Scholar 

  9. McAllister, R., Gal, Y., Kendall, A., van der Wilk, M., Shah, A., Cipolla, R., Weller, A.: Concrete problems for autonomous vehicle safety: advantages of Bayesian deep learning. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 4745–4753 (2017)

    Google Scholar 

  10. Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 17816 (2017)

    Article  Google Scholar 

  11. Joint Committee for Guides in Metrology: JCGM 100: Evaluation of measurement data - guide to the expression of uncertainty in measurement. Technical report, JCGM (2008)

    Google Scholar 

  12. Eichstädt, S., Link, A., Harris, P., Elster, C.: Efficient implementation of a monte carlo method for uncertainty evaluation in dynamic measurements. Metrologia 49(3), 401 (2012)

    Article  Google Scholar 

  13. Gal, Y.: Uncertainty in deep learning. Ph.D thesis, University of Cambridge (2016)

    Google Scholar 

  14. Oneto, L., Orlandi, I., Anguita, I.: Performance assessment and uncertainty quantification of predictive models for smart manufacturing systems. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 1436–1445. IEEE (2015)

    Google Scholar 

  15. Bandyszak, T., Daun, M., Tenbergen, B., Weyer, T.: Model-based documentation of context uncertainty for cyber-physical systems. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pp. 1087–1092. IEEE (2018)

    Google Scholar 

  16. Ma, T., Ali, S., Yue, T.: Conceptually understanding uncertainty in self-healing cyber-physical systems. Simula Research Lab Technical report, 7 (2016)

    Google Scholar 

  17. Wolbrecht, E., D’ambrosio, B., Paasch, R., Kirby, D.: Monitoring and diagnosis of a multistage manufacturing process using Bayesian networks. Ai Edam 14(1), 53–67 (2000)

    Google Scholar 

  18. McNaught, K., Chan, A.: Bayesian networks in manufacturing. J. Manuf. Technol. Manage. 22(6), 734–747 (2011)

    Article  Google Scholar 

  19. Nannapaneni, S., Mahadevan, S., Rachuri, S.: Performance evaluation of a manufacturing process under uncertainty using Bayesian networks. J. Cleaner Prod. 113, 947–959 (2016)

    Article  Google Scholar 

  20. Nannapaneni, S., Mahadevan, S., Pradhan, S., Dubey, A.: Towards reliability-based decision making in cyber-physical systems. In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–6. IEEE (2016)

    Google Scholar 

  21. Bhinge, R., Park, J., Law, K.H., Dornfeld, D.A., Helu, M., Rachuri, S.: Toward a generalized energy prediction model for machine tools. J. Manuf. Sci. Eng. 139(4), 041013 (2017)

    Article  Google Scholar 

  22. Hong, S., Zhou, Z., Lu, C., Wang, B., Zhao, T.: Bearing remaining life prediction using Gaussian process regression with composite kernel functions. J. Vibroeng. 17(2), 695–704 (2015)

    Google Scholar 

  23. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)

    Article  Google Scholar 

  24. Hemamalini, R., Josephine Mary, L.: An analysis on multi-agent based distributed data mining system. Int. J. Sci. Res. Publ. 4(6), 1–6 (2014)

    Google Scholar 

  25. Bakliwal, K., Dhada, M.H., Palau, A.S., Parlikad, A.K., Lad, B.K.: A multi agent system architecture to implement collaborative learning for social industrial assets. IFAC-PapersOnLine 51(11), 1237–1242 (2018)

    Article  Google Scholar 

  26. Barbosa, J., Leitão, P., Ferreira, A., Queiroz, J., Geraldes, C.A.S., Coelho, J.P.: Implementation of a multi-agent system to support ZDM strategies in multi-stage environments. In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), pp. 822–827 (2018)

    Google Scholar 

  27. Kirn, S.: Flexibility of multiagent systems. In: Multiagent Engineering, pp. 53–69. Springer, Heidelberg (2006)

    Google Scholar 

  28. Rana, O.F., Stout, K.: What is scalability in multi-agent systems? In: Proceedings of the Fourth International Conference on Autonomous Agents, pp. 56–63. ACM (2000)

    Google Scholar 

  29. Sabatucci, L., Seidita, V., Cossentino, M.: The four types of self-adaptive systems: a metamodel. In: International Conference on Intelligent Interactive Multimedia Systems and Services, pp. 440–450. Springer, Cham (2018)

    Google Scholar 

  30. Mikic-Rakic, M., Mehta, N., Medvidovic, N.: Architectural style requirements for self-healing systems. In: Proceedings of the First Workshop on Self-healing Systems, pp. 49–54. ACM (2002)

    Google Scholar 

  31. Poole, D.L., Mackworth, A.K.: Artificial Intelligence: Foundations of Computational Agents, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  32. Chen, H., Huang, S.: A comparative study on model selection and multiple model fusion. In: 2005 7th International Conference on Information Fusion, vol. 1, pp. 7–pp. IEEE (2005)

    Google Scholar 

  33. Queiroz, J., Leitão, P., Oliveira, E.: Industrial cyber physical systems supported by distributed advanced data analytics. In: International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing, pp. 47–59. Springer (2016)

    Google Scholar 

  34. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-Vito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  35. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  36. OpenSistemas. osbrain - a general-purpose multi-agent system module written in python (2019). https://github.com/opensistemas-hub/osbrain

  37. Schneider, T., Klein, S., Bastuck, M.: Condition monitoring of hydraulic systems data set (2018). https://doi.org/10.5281/zenodo.1323611

  38. Shridhar, K., Laumann, F., Maurin, A.L., Liwicki, M.: Bayesian convolutional neural networks. arXiv preprint arXiv:1806.05978 (2018)

  39. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements

The research presented was supported by European Metrology Programme for Innovation and Research (EMPIR) under the project Metrology for the Factory of the Future (Met4FoF), project number 17IND12. The authors thank the project partners for their valuable inputs especially Björn Ludwig and Sascha Eichstädt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Xiang Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yong, B.X., Brintrup, A. (2020). Multi Agent System for Machine Learning Under Uncertainty in Cyber Physical Manufacturing System. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-030-27477-1_19

Download citation

Publish with us

Policies and ethics