Skip to main content

Functional Anatomy of the Human Spine

  • Chapter
  • First Online:
Spine Pain Care

Abstract

The objective of this chapter is to cover the anatomy and signaling pathways that contribute to our understanding of signal transduction from the peripheral to the central nervous system. This chapter provides the basis for understanding pain pharmacology and various interventions undertaken by pain practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cervero F, Laird JM. Visceral pain. Lancet. 1999;353(9170):2145–8.

    CAS  PubMed  Google Scholar 

  2. Almeida TF, Roizenblatt S, Tufik S. Afferent pain pathways: a neuroanatomical review. Brain Res. 2004;1000(1–2):40–56.

    CAS  PubMed  Google Scholar 

  3. Craig AD. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci. 2003;26:1–30.

    CAS  PubMed  Google Scholar 

  4. Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.

    CAS  PubMed  Google Scholar 

  5. Woolf CJ, Fitzgerald M. The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J Comp Neurol. 1983;221(3):313–28.

    CAS  PubMed  Google Scholar 

  6. Saadé NE, Jabbur SJ. Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol. 2008;86:22–47.

    PubMed  Google Scholar 

  7. Laine FJ, Smoker WR. Anatomy of the cranial nerves. Neuroimaging Clin N Am. 1998;8(1):69–100.

    CAS  PubMed  Google Scholar 

  8. White JC. Sensory innervation of the viscera. Res Publ Assoc Nerv Ment Dis. 1943;23:373–90.

    Google Scholar 

  9. Nolte J, Sundsten JW. The human brain: an introduction to its functional anatomy. 5th ed. St. Louis: Mosby; 2002.

    Google Scholar 

  10. DeGowin RL, DeGowin EL, Brown DD, et al. DeGowin & DeGowin’s diagnostic examination. 6th ed. New York: McGraw-Hill; 1994.

    Google Scholar 

  11. Silen W, Cope Z. Cope’s early diagnosis of the acute abdomen. 21st ed. New York: Oxford University Press; 2005.

    Google Scholar 

  12. Lee MW, McPhee RW, Stringer MD. An evidence-based approach to human dermatomes. Clin Anat. 2008;21(5):363–73.

    CAS  PubMed  Google Scholar 

  13. Dequéant ML, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet. 2008;9(5):370–82.

    PubMed  Google Scholar 

  14. Tannahill D, Britto JM, Vermeren MM, Ohta K, Cook GM, Keynes RJ. Orienting axon growth: spinal nerve segmentation and surround-repulsion. Int J Dev Biol. 2000;44(1):119–27.

    CAS  PubMed  Google Scholar 

  15. Netter FH. Atlas of human anatomy. 4th ed. Philadelphia: Saunders/Elsevier; 2006.

    Google Scholar 

  16. Swap CJ, Nagurney JT. Value and limitations of chest pain history in the evaluation of patients with suspected acute coronary syndromes. JAMA. 2005;294(20):2623–9.

    CAS  PubMed  Google Scholar 

  17. Cervero F, Laird JM, Pozo MA. Selective changes of receptive field properties of spinal nociceptive neurones induced by noxious visceral stimulation in the cat. Pain. 1992;51(3):335–42.

    CAS  PubMed  Google Scholar 

  18. Cervero F, Tattersall JE. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn. J Physiol. 1987;388:383–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Foreman RD. Integration of viscerosomatic sensory input at the spinal level. Prog Brain Res. 2000;122:209–21.

    CAS  PubMed  Google Scholar 

  20. Saper CB. Pain as a visceral sensation. Prog Brain Res. 2000;122:237–43.

    CAS  PubMed  Google Scholar 

  21. Pappagallo M. The neurological basis of pain. New York: McGraw-Hill; 2005.

    Google Scholar 

  22. Westlund KN. Visceral nociception. Curr Rev Pain. 2000;4(6):478–87.

    CAS  PubMed  Google Scholar 

  23. Bueno L. Neuroimmune alterations of ENS functioning. Gut. 2000;47(suppl 4):iv63–5, discussion iv76.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cervero F. Dorsal horn neurons and their sensory inputs. In: Yaksh TL, editor. Spinal afferent processing. New York: Plenum Press; 1986.

    Google Scholar 

  25. Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol. 1997;14(1):2–31.

    CAS  PubMed  Google Scholar 

  26. Jänig W. Neuronal mechanisms of pain with special emphasis on visceral and deep somatic pain. Acta Neurochir Suppl (Wien). 1987;38:16–32.

    Google Scholar 

  27. Brown AG, Fyffe RE. Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat. J Physiol. 1981;321:31–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rustioni A. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors. Arch Ital Biol. 2005;143(2):103–12.

    CAS  PubMed  Google Scholar 

  29. Liu H, Brown JL, Jasmin L, Maggio JE, Vigna SR, Mantyh PW, et al. Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci U S A. 1994;91(3):1009–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Staud R. Evidence of involvement of central neural mechanisms in generating fibromyalgia pain. Curr Rheumatol Rep. 2002;4(4):299–305.

    PubMed  Google Scholar 

  31. Baranauskas G, Nistri A. Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog Neurobiol. 1998;54(3):349–65.

    CAS  PubMed  Google Scholar 

  32. DeLeo JA, Winkelstein BA. Physiology of chronic spinal pain syndromes: from animal models to biomechanics. Spine. 2002;27(22):2526–37.

    PubMed  Google Scholar 

  33. Gracely RH, Grant MA, Giesecke T. Evoked pain measures in fibromyalgia. Best Pract Res Clin Rheumatol. 2003;17(4):593–609.

    PubMed  Google Scholar 

  34. Bennett GJ. Update on the neurophysiology of pain transmission and modulation: focus on the NMDA-receptor. J Pain Symptom Manag. 2000;19(1 suppl):S2–6.

    CAS  Google Scholar 

  35. Meller ST, Gebhart GF. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993;52(2):127–36.

    CAS  PubMed  Google Scholar 

  36. Luo ZD, Cizkova D. The role of nitric oxide in nociception. Curr Rev Pain. 2000;4(6):459–66.

    CAS  PubMed  Google Scholar 

  37. Price DD, Hu JW, Dubner R, Gracely RH. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain. 1977;3(1):57–68.

    CAS  PubMed  Google Scholar 

  38. Tasker R. Central pain states. In: Loeser JD, editor. Bonica’s management of pain. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 433–57.

    Google Scholar 

  39. Canavero S, Bonicalzi V, Massa-Micon B. Central neurogenic pruritus: a literature review. Acta Neurol Belg. 1997;97(4):244–7.

    CAS  PubMed  Google Scholar 

  40. Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central post-stroke pain. Pain. 1995;61(2):187–93.

    CAS  PubMed  Google Scholar 

  41. Finnerup NB, Johannesen IL, Sindrup SH, Bach FW, Jensen TS. Pain and dysesthesia in patients with spinal cord injury: a postal survey. Spinal Cord. 2001;39(5):256–62.

    CAS  PubMed  Google Scholar 

  42. Canavero S, Bonicalzi V. Central pain syndrome: pathophysiology, diagnosis and management. Cambridge, New York: Cambridge University Press; 2007.

    Google Scholar 

  43. Waxman SG, Hains BC. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 2006;29(4):207–15.

    CAS  PubMed  Google Scholar 

  44. National Spinal Cord Injury Statistical Center. 2017 updated report. https://www.nscisc.uab.edu.

  45. Finnerup NB, Jensen TS. Spinal cord injury pain—mechanisms and treatment. Eur J Neurol. 2004;11(2):73–82.

    CAS  PubMed  Google Scholar 

  46. Siddall PJ, Loeser JD. Pain following spinal cord injury. Spinal Cord. 2001;39(2):63–73.

    CAS  PubMed  Google Scholar 

  47. Todor DR, Mu HT, Milhorat TH. Pain and syringomyelia: a review. Neurosurg Focus. 2000;8(3):E11.

    CAS  PubMed  Google Scholar 

  48. Ragnarsson KT. Management of pain in persons with spinal cord injury. J Spinal Cord Med. 1997;20(2):186–99.

    CAS  PubMed  Google Scholar 

  49. Loeser JD, Ward AA Jr, White LE Jr. Chronic deafferentation of human spinal cord neurons. J Neurosurg. 1968;29(1):48–50.

    CAS  PubMed  Google Scholar 

  50. Hains BC, Johnson KM, Eaton MJ, Willis WD, Hulsebosch CE. Serotonergic neural precursor cell grafts attenuate bilateral hyperexcitability of dorsal horn neurons after spinal hemisection in rat. Neuroscience. 2003;116(4):1097–110.

    CAS  PubMed  Google Scholar 

  51. Davies SN, Lodge D. Evidence for involvement of N-methylaspartate receptors in ‘wind-up’ of class 2 neurones in the dorsal horn of the rat. Brain Res. 1987;424(2):402–6.

    CAS  PubMed  Google Scholar 

  52. Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci U S A. 1999;96(14):7680–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mills CD, Johnson KM, Hulsebosch CE. Group I metabotropic glutamate receptors in spinal cord injury: roles in neuroprotection and the development of chronic central pain. J Neurotrauma. 2002;19(1):23–42.

    PubMed  Google Scholar 

  54. Hains BC, Willis WD, Hulsebosch CE. Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat. Exp Brain Res. 2003;149(2):174–86.

    CAS  PubMed  Google Scholar 

  55. Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain. 2004;109(3):379–88.

    CAS  PubMed  Google Scholar 

  56. Hains BC, Saab CY, Waxman SG. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain. 2005;128(Pt 10):2359–71.

    PubMed  Google Scholar 

  57. Morrow TJ, Paulson PE, Brewer KL, Yezierski RP, Casey KL. Chronic, selective forebrain responses to excitotoxic dorsal horn injury. Exp Neurol. 2000;161(1):220–6.

    CAS  PubMed  Google Scholar 

  58. Pattany PM, Yezierski RP, Widerström-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol. 2002;23(6):901–5.

    PubMed  Google Scholar 

  59. Birbaumer N, Lutzenberger W, Montoya P, Larbig W, Unertl K, Töpfner S, et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci. 1997;17(14):5503–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Langley JN. The autonomic nervous system. Brain. 1903;26:1–26.

    Google Scholar 

  61. Shefchyk SJ. Spinal cord neural organization controlling the urinary bladder and striated sphincter. Prog Brain Res. 2002;137:71–82.

    PubMed  Google Scholar 

  62. Mitchell GAG. Anatomy of the autonomic nervous system. Edinburgh: Livingstone; 1953.

    Google Scholar 

  63. Pick J. The autonomic nervous system; morphological, comparative, clinical, and surgical aspects. Philadelphia: Lippincott; 1970.

    Google Scholar 

  64. Jänig W. Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol. 1996;42(1–2):29–51.

    PubMed  Google Scholar 

  65. Brodal P. The central nervous system: structure and function. 3rd ed. New York: Oxford University Press; 2004.

    Google Scholar 

  66. Aunis D, Langley K. Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla. Acta Physiol Scand. 1999;167(2):89–97.

    CAS  PubMed  Google Scholar 

  67. Cho HM, Lee DY, Sung SW. Anatomical variations of rami communicantes in the upper thoracic sympathetic trunk. Eur J Cardiothorac Surg. 2005;27(2):320–4.

    PubMed  Google Scholar 

  68. Murata Y, Takahashi K, Yamagata M, Takahashi Y, Shimada Y, Moriya H. Variations in the number and position of human lumbar sympathetic ganglia and rami communicantes. Clin Anat. 2003;16(2):108–13.

    PubMed  Google Scholar 

  69. Ramsaroop L, Partab P, Singh B, Satyapal KS. Thoracic origin of a sympathetic supply to the upper limb: the ‘nerve of Kuntz’ revisited. J Anat. 2001;199(Pt 6):675–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sato J, Perl ER. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science. 1991;251(5001):1608–10.

    CAS  PubMed  Google Scholar 

  71. Jänig W, Levine JD, Michaelis M. Interactions of sympathetic and primary afferent neurons following nerve injury and tissue trauma. Prog Brain Res. 1996;113:161–84.

    PubMed  Google Scholar 

  72. Janig W. The sympathetic nervous system in pain. Eur J Anaesthesiol Suppl. 1995;10:53–60.

    CAS  PubMed  Google Scholar 

  73. Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991 Mar;44(3):293–9.

    CAS  PubMed  Google Scholar 

  74. Fishman SM, Ballantyne JC. In: Rathmell JP, editor. Bonica’s management of pain. 4th ed. Baltimore: Lippincott, Williams & Wilkins; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trujillo, D.G., Chakravarthy, K., Brenner, G.J. (2020). Functional Anatomy of the Human Spine. In: Mao, J. (eds) Spine Pain Care. Springer, Cham. https://doi.org/10.1007/978-3-030-27447-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27447-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27446-7

  • Online ISBN: 978-3-030-27447-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics