Skip to main content

Regulation of Proline Accumulation and Its Molecular and Physiological Functions in Stress Defence

  • Chapter
  • First Online:
Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants

Abstract

The accumulation of proline is a conserved response of plants to abiotic stress conditions. Moreover, the activation of proline metabolism takes place during the plant response to some pathogens. Although these responses are well documented, the molecular and physiological functions of proline accumulation under stress are still a matter of debate. The biochemical pathways that lead to proline accumulation and its functions in regulating development are described in the cognate chapter “Proline Metabolism and Its Functions in Development and Tolerance to Stress”. In this chapter, we will describe the potential roles assigned to proline accumulation, dissecting the data coming from in vitro/in silico and in vivo approaches and those coming from bacterial or unicellular eukaryotes and plants. With this, we aim to present a clear view of the evidence related to the molecular and physiological functions of proline accumulation under stress conditions in plants. In recent years, the understanding of the regulation of proline accumulation at transcriptional level under stress conditions in plants has been increased considerably, yet little is known about the possible occurrence of post-translational regulatory mechanisms. We will integrate this knowledge with the potential roles of proline accumulation to see whether it contributes to comprehending which roles might be physiologically more relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksza D, Horváth GV, Sándor G, Szabados L (2017) Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiol 175:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alia MP, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Alia SPP, Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem Biophys Res Commun 181:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Alia SPP, Mohanty P (1993) Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil 155:497–500

    Article  CAS  Google Scholar 

  • Alia PKVSK, Saradhi PP (1995) Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39:45–97

    Article  CAS  Google Scholar 

  • Alia SPP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B Biol 38:253–257

    Article  CAS  Google Scholar 

  • An Y, Zhang M, Liu G, Han R, Liang Z (2013) Proline accumulation in leaves of Periploca sepium via both biosynthesis up-regulation and transport during recovery from severe drought. PLoS One 17:e69942

    Article  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1983) Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch Biochem Biophys 224:169–177

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, New York

    Google Scholar 

  • Ayliffe MA, Roberts JK, Mitchell HJ, Zhang R, Lawrence GJ, Ellis JG, Pryor TJ (2002) A plant gene up-regulated at rust infection sites. Plant Physiol 129:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Rejeb K, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  CAS  PubMed  Google Scholar 

  • Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol 208:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Bertazzini M, Medrzycki P, Bortolotti L, Maistrello L, Forlani G (2010) Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids 39:315–318

    Article  CAS  PubMed  Google Scholar 

  • Bertazzini M, Sacchi G, Forlani G (2018) A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na+ exclusion from shoots. J Plant Physiol 226:145–153

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara GB, Yang T-H, Verslues PE (2015) Dynamic proline metabolism: importance and regulation in water limited environments. Front Plant Sci 6:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Biancucci M, Mattioli R, Forlani G, Funck D, Costantino P, Trovato M (2015) Role of proline and GABA in sexual reproduction of angiosperms. Front Plant Sci 6:484

    Article  Google Scholar 

  • Binzel M, Hasegawa P, Rhodes D, Handa S, Handa A, Bressan R (1987) Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol 84:1408–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büssis D, Heineke D (1998) Acclimation of potato plants to polyethylene glycol-induced water deficit. II. Contents and subcellular distribution of organic solutes. J Exp Bot 49:1361–1370

    Article  Google Scholar 

  • Cecchini NM, Monteoliva MI, Alvarez ME (2011) Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol 155:1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang H, Dandekar M (1995) Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant Cell Environ 18:1280–1290

    Article  CAS  Google Scholar 

  • da Rocha IMA, Vitorello VA, Silva JS, Ferreira-Silva SL, Viégas RA, Silva EN, Silveira JAG (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49

    Article  CAS  PubMed  Google Scholar 

  • del Socorro Santos-Díaz M, Ochoa-Alejo N (1994) PEG-tolerant cell clones of chili pepper: growth, osmotic potentials and solute accumulation. Plant Cell Tissue Organ Cult 37:1–8

    Article  Google Scholar 

  • Delauney A, Verma D (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino C, Pizzuto R, Pallotta ML, De Santis A, Passarella S (2006) Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Díaz P, Borsani O, Márquez M, Monza J (2005) Osmotically induced proline accumulation in Lotus corniculatus leaves affected by light and nitrogen source. Plant Growth Regul 46:223–232

    Article  CAS  Google Scholar 

  • Donald SP, Sun XY, Hu CAA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815

    CAS  PubMed  Google Scholar 

  • Dong S, Zhang J, Beckles DM (2018) A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Sci Rep 8:9314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt SM (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito S (2016) Nitrogen assimilation, abiotic stress and glucose 6-phosphate dehydrogenase: the full circle of reductants. Plants 5:24

    Article  PubMed Central  CAS  Google Scholar 

  • Feng XJ, Li JR, Qi SL, Lin QF, Jin JB, Hua XJ (2016) Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc Natl Acad Sci U S A 113:E8335–E8343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN (2015) Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev 90:1065–1099

    Article  PubMed  Google Scholar 

  • Forlani G (2017) Post-translational regulation of proline synthesis in rice. In: Proceedings of the SIBV-SIGA Joint Meeting Sustainability of Agricultural Environment: Contributions of Plant Genetics and Physiology, p 5.62. Pisa, Italy

    Google Scholar 

  • Forlani G, Scainelli D, Nielsen E (1997) Δ1-pyrroline-5-carboxylate dehydrogenase from cultured cells of potato (Purification and properties). Plant Physiol 113:1413–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forlani G, Bertazzini M, Zarattini M, Funck D (2015a) Functional characterization and expression analysis of rice δ1-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism. Front Plant Sci 6:591

    PubMed  PubMed Central  Google Scholar 

  • Forlani G, Bertazzini M, Zarattini M, Funck D, Ruszkowski MJ, Nocek B (2015b) Functional properties and preliminary structural characterization of rice δ1-pyrroline-5-carboxylate reductase. Front Plant Sci 6:565

    PubMed  PubMed Central  Google Scholar 

  • Forlani G, Makarova KS, Ruszkowski M, Bertazzini M, Nocek B (2015c) Evolution of plant δ1-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives. Front Plant Sci 6:567

    PubMed  PubMed Central  Google Scholar 

  • Forlani G, Bertazzini M, Cagnano G (2018) Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biol 21:336–342

    Article  PubMed  CAS  Google Scholar 

  • Funck D, Winter G, Baumgarten L, Forlani G (2012) Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol 12:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangappa SN, Botto JF (2016) The multifaceted roles of HY5 in plant growth and development. Mol Plant 9:1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Ge M, Pan XM (2009) The contribution of proline residues to protein stability is associated with isomerization equilibrium in both unfolded and folded states. Extremophiles 13:481–489

    Article  CAS  PubMed  Google Scholar 

  • Giberti S, Funck D, Forlani G (2014) Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol 202:911–919

    Article  CAS  PubMed  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa S, Bressan RA, Handa AK, Carpita NC, Hasegawa PM (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol 73:834–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot 63:1445–1459

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt TM, (2018) Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology 98 (1-2):121–135

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. J Plant Physiol 164:1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci U S A 89:9354–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Nonami H, Fukuyama T, Hashimoto Y (1999) Water potential associated with cell elongation and cell division of tissue-cultured carnation plants. Plant Biotechnol 16:115–121

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants 17:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  PubMed  Google Scholar 

  • Korasick DA, Kon R, Kope M, Hájková E, Vigouroux A, Moréra S, Becker DF, Marek Š, Tanner JJ, Kope D (2019) Structural and biochemical characterization of aldehyde dehydrogenase 12, the last enzyme of proline catabolism in plants. J Mol Biol 431:576–592

    Article  CAS  PubMed  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B-B, Wang X, Tai L, Ma T-T, Shalmani A, Liu W-T, Li W-Q, Chen K-M (2018) NAD kinases: metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development. Front Plant Sci 9:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Phang JM (2012) Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment. Autophagy 8:1407–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, Phang JM (2009) Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 69:6414–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Muehling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    Article  CAS  PubMed  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua X-J (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv BS, Ma HY, Li XW, Wei LX, Lv HY, Yang HY, Jiang CJ, Liang ZW (2015) Proline accumulation is not correlated with saline-alkaline stress tolerance in rice seedlings. Agron J 107:51–60

    Article  CAS  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39(4):949–962

    Article  CAS  PubMed  Google Scholar 

  • Mattioli R, Biancucci M, Lonoce C, Costantino P, Trovato M (2012) Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol 12:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheu S, Crailsheim K, Leonhard B (2000) Importance of proline and other amino acids during honeybee flight (Apis mellifera carnica POLLMANN). Amino Acids 18:157–175

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009a) Unraveling δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009b) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2011) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Mitchell HJ, Ayliffe MA, Rashid KY, Pryor AJ (2006) A rust-inducible gene from flax (fis1) is involved in proline catabolism. Planta 223:213–222

    Article  CAS  PubMed  Google Scholar 

  • Monteoliva MI, Rizzi YS, Cecchini NM, Hajirezaei MR, Alvarez ME (2014) Context of action of proline dehydrogenase (ProDH) in the hypersensitive response of Arabidopsis. BMC Plant Biol 14:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muzammil S, Shrestha A, Dadshani S, Pillen K, Siddique S, Léon J, Naz A (2018) An ancestral allele of Pyrroline-5-carboxylate synthase1 promotes proline accumulation and drought adaptation in cultivated barley. Plant Physiol 78:771–782

    Article  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  CAS  PubMed  Google Scholar 

  • Öztürk L, Demir Y (2002) In vivo and in vitro protective role of proline. Plant Growth Regul 38:259–264

    Article  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem 461:205–210

    Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  CAS  PubMed  Google Scholar 

  • Poustini K, Siosemardeh A, Ranjbar M (2007) Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Genet Resour Crop Evol 54:925–934

    Article  CAS  Google Scholar 

  • Ren Y, Miao M, Meng Y, Cao J, Fan T, Yue J, Xiao F, Liu Y, Cao S (2018) DFR1-Mediated inhibition of proline degradation pathway regulates drought and freezing tolerance in Arabidopsis. Cell Rep 23:3960–3974

    Article  CAS  PubMed  Google Scholar 

  • Rizzi YS, Monteoliva MI, Fabro G, Grosso CL, Laróvere LE, Alvarez ME (2015) P5CDH affects the pathways contributing to pro synthesis after ProDH activation by biotic and abiotic stress conditions. Front Plant Sci 6:572

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents -proline, betaine, and trehalose- on membrane phospholipids. Arch Biochem Biophys 245:134–143

    Article  CAS  PubMed  Google Scholar 

  • Ruszkowski M, Nocek B, Forlani G, Dauter Z (2015) The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. Front Plant Sci 6:869

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanada Y, Ueda H, Kuribayashi K, Andoh T, Hayashi F, Tamai N, Wada K (1995) Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress. Plant Cell Physiol 36:965–970

    Article  CAS  Google Scholar 

  • Sanderson PW, Lis LJ, Quinn PJ, Williams WP (1991) The Hofmeister effect in relation to membrane lipid phase stability. Biochim Biophys Acta Biomembr 1067:43–50

    Article  CAS  Google Scholar 

  • Sano M, Kawashima N (1982) Water stress induced proline accumulation at different stalk positions and growth stages of detached tobacco leaves. Agric Biol Chem 46:647–653

    CAS  Google Scholar 

  • Saradhi PP, Alia AS, Prasad KVSK (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5

    Article  CAS  PubMed  Google Scholar 

  • Schobert B, Tschesche H (1978) Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta 541:270–277

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2012) Ornithine-δ-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ 35:1329–1343

    Article  CAS  PubMed  Google Scholar 

  • Servet C, Ghelis T, Richard L, Zilberstein A, Savouré A (2012) Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front Biosci 17:607–620

    Article  CAS  Google Scholar 

  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ 33:1838–1851

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Villamor JG, Versules PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde S, Villamor JG, Lin W-D, Sharma S, Verslues PE (2016) Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiol 172:1074–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Signorelli S (2016) The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front Plant Sci 7:1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Signorelli S, Monza J (2017) Identification of δ1-pyrroline 5-carboxylate synthase (P5CS) genes involved in the synthesis of proline in Lotus japonicus. Plant Signal Behav 12:e1367464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Signorelli S, Arellano JB, Melø TB, Borsani O, Monza J (2013a) Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiol Biochem 64:80–83

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Casaretto E, Sainz M, Díaz P, Monza J, Borsani O (2013b) Antioxidant and photosystem II responses contribute to explain the drought-heat contrasting tolerance of two forage legumes. Plant Physiol Biochem 70:195–203

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013c) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201–202:137–146

    Article  PubMed  CAS  Google Scholar 

  • Signorelli S, Coitiño EL, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between ˙OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem B 118:37–47

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J (2015) Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One 10:e0115349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Signorelli S, Imparatta C, Rodríguez-ruiz M, Borsani O, Corpas FJ, Monza J (2016) In vivo and in vitro approaches demonstrate proline is not directly involved in the protection against superoxide, nitric oxide, nitrogen dioxide and peroxynitrite. Funct Plant Biol 43:870–879

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Agudelo-Romero P, Considine MJ, Foyer CH (2018) Roles for light, energy and oxygen in the fate of quiescent axillary buds. Plant Physiol 176:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol 97:990–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  CAS  PubMed  Google Scholar 

  • Savouré A (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Molecular and General Genetics MGG 254(1):104–109

    Article  PubMed  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140

    Article  PubMed  PubMed Central  Google Scholar 

  • Verslues P, Sharp R (1999) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II Metabolic source of increased proline deposition in the elongation zone. Plant Physiol 119:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voetberg GS, Sharp RE (1991) Growth of the maize primary root at low water potentials III. Role of increased proline deposition in osmotic adjustment. Plant Physiol 96:1125–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X (2017) Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources. Front Plant Sci 8:2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Zarattini M, Forlani G (2017) Toward unveiling the mechanisms for transcriptional regulation of proline biosynthesis in the plant cell response to biotic and abiotic stress conditions. Front Plant Sci 8:927

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, Guthke R, Platzer M, Kahn CR, Ristow M (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15:451–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CS, Lu Q, Verma DPS (1995) Removal of feedback inhibition of δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Forlani or Santiago Signorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forlani, G., Trovato, M., Funck, D., Signorelli, S. (2019). Regulation of Proline Accumulation and Its Molecular and Physiological Functions in Stress Defence. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P. (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-27423-8_3

Download citation

Publish with us

Policies and ethics