Skip to main content

Best Constants for Weighted Poincaré–Type Inequalities

  • Chapter
  • First Online:
Differential and Integral Inequalities

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 151))

Abstract

In this paper we will determine the best constant for a class of (weighted and non-weighted) new Poincaré-type inequalities. In particular, we obtain sharp inequalities under the concavity, convexity of the weight function. We also establish a family of sharp Poincaré inequalities involving the second derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Acosta, R.G. Durán, An optimal Poincaré inequality in L 1 for convex domains. Proc. Am. Math. Soc. 132(1), 195–202 (2004)

    Article  Google Scholar 

  2. S.K. Chua, R.L. Wheede, A note on sharp 1-dimensional Poincaré inequalities. Proc. Am. Math. Soc. 8, 2309–2316 (2006)

    Article  Google Scholar 

  3. M. Dryja, M.V. Sarkis, O.B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72, 313–348 (1996)

    Article  MathSciNet  Google Scholar 

  4. A. Guessab, G. Schmeisser, A definiteness theory for cubature formulae of order two. Constr. Approx. 24, 263–288 (2006)

    Article  MathSciNet  Google Scholar 

  5. A. Guessab, G. Schmeisser, Negative definite cubature formulae, extremality and Delaunay triangulation. Constr. Approx. 31, 95–113 (2010)

    Article  MathSciNet  Google Scholar 

  6. A. Guessab, G. Schmeisser, Construction of positive definite cubature formulae and approximation of functions via Voronoi tessellations. Adv. Comput. Math. 32, 25–41 (2010)

    Article  MathSciNet  Google Scholar 

  7. A. Klawonn, O.B. Widlund, FETI and Neumann-Neumann iterative substructuring methods: connections and new results. Commun. Pure Appl. Math. 54, 57–90 (2001)

    Article  MathSciNet  Google Scholar 

  8. E.H. Lieb, M. Loss, Analysis, 2nd edn. (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  9. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    Article  Google Scholar 

  10. A. Toselli, O. Widlund, Domain Decomposition Methods-Algorithms and Theory (Springer, Berlin, 2005)

    Book  Google Scholar 

  11. R.A. Verfurth, A note on polynomial approximation in Sobolev spaces. RAIRO M2AN 33, 715–719 (1999)

    Article  MathSciNet  Google Scholar 

  12. J. Wloka, Partial Differential Equations (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  13. J. Xu, Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Models Methods Appl. Sci. 18, 1–29 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Guessab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guessab, A. (2019). Best Constants for Weighted Poincaré–Type Inequalities. In: Andrica, D., Rassias, T. (eds) Differential and Integral Inequalities. Springer Optimization and Its Applications, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-030-27407-8_12

Download citation

Publish with us

Policies and ethics