Skip to main content

Using Bone Histology to Identify Stillborn Infants in the Archaeological Record

  • Chapter
  • First Online:

Part of the book series: Bioarchaeology and Social Theory ((BST))

Abstract

Various osteological techniques can be used to assess the developmental age of an infant skeleton, but it is more difficult to discern whether an infant had died before or after birth. Histological analysis of bone microstructure to look for microbial tunnelling (bioerosion) by putrefactive gut bacteria may represent a novel method of determining whether an archaeological infant had been a live birth. Gut bacteria spread around the body in the days following death and are primarily responsible for the putrefactive stage of decomposition. Most archaeological human bones that have been looked at using this method have been extensively bioeroded by bacteria. However, around half of archaeological young infant human skeletons remain free from bacterial tunnelling. The infant gut microbiome is thought to develop soon after birth and the best explanation for the large proportion of unbioeroded archaeological young infant skeletons is that they represent the remains of stillborn and short-lived infants that had not yet developed their bioerosive gut bacteria. The ability to identify stillborn and short-lived infant skeletons in the archaeological record has useful applications to the study of demography, health and social belief towards infancy and the beginnings of life in past populations. This chapter will discuss the use of histological analyses of bone diagenesis to identify stillborn infants in the archaeological record and demonstrate how this method may be applied to specific archaeological questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aagard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., & Versalovic, J. (2014). The placenta harbours a unique microbiome. Science Translational Medicine, 6(237), 237–265.

    Article  Google Scholar 

  • Ardissone, A. N., de la Cruz, D. M., Davis-Richardson, A. G., Rechcigl, K. T., Li, N., Drew, J. C., Murgas-Torrazza, R., Sharma, R., Hudak, M. L., Triplet, E. W., & Neu, J. (2014). Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One, 9(6), e101399.

    Article  Google Scholar 

  • Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., & Khan, M. T. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe, 17(5), 690–703.

    Article  Google Scholar 

  • Balzer, A., Gleixner, G., Grupe, G., Schmidt, H. L., Schramm, S., & Turban-Just, S. (1997). In vitro decomposition of bone collagen by soil bacteria: The implications for stable isotope analysis in archaeometry. Archaeometry, 39(2), 415–429.

    Article  Google Scholar 

  • Bell, L. S., & Elkerton, A. (2008). Unique marine taphonomy in human skeletal material recovered from the Medieval warship Mary Rose. International Journal of Osteoarchaeology, 18(5), 523–535.

    Article  Google Scholar 

  • Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International, 82(2), 129–140.

    Article  Google Scholar 

  • Bello, S. M., Thomann, A., Signoli, M., Dutour, O., & Andrew, P. (2006). Age and sex bias in the reconstruction of past population structures. American Journal of Physical Anthropology, 129(1), 24–38.

    Article  Google Scholar 

  • Booth, T. J. (2014). An Investigation into the relationship between bone diagenesis and funerary treatment. University of Sheffield, PhD Thesis.

    Google Scholar 

  • Booth, T. J. (2016). An investigation into the relationship between bacterial bioerosion and funerary treatment in European archaeological human bone. Archaeometry, 58(3), 484–499.

    Article  Google Scholar 

  • Booth, T. J., Redfern, R. C., & Gowland, R. L. (2016). Immaculate conceptions: Micro-CT analysis of diagenesis in Romano-British infant skeletons. Journal of Archaeological Science, 74, 124–134.

    Article  Google Scholar 

  • Buckberry, J. (2000). Missing, presumed buried? Bone diagenesis and underrepresentation of Anglo-Saxon children. Assemblage 5.

    Google Scholar 

  • Chamberlain, A.T. (1999). Carsington Pasture Cave, Brassington, Derbyshire: A prehistoric burial site. CAPRA 1.

    Google Scholar 

  • Chamberlain, A.T. (2001). Radiocarbon dates from Carsington Pasture Cave, Brassington, Derbyshire. CAPRA 3.

    Google Scholar 

  • Child, A. M. (1995). Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science, 22(2), 165–174.

    Article  Google Scholar 

  • Child, A. M., Gillard, R. D., & Pollard, A. M. (1993). Microbially-induced promotion of amino acid racemization in bone: Isolation of the microorganisms and the detection of their enzymes. Journal of Archaeological Science, 20(2), 159–168.

    Article  Google Scholar 

  • Collins, M. J., Penkman, K. E., Rohland, N., Shapiro, B., Dobberstein, R. C., Ritz-Timme, S., & Hofreiter, M. (2009). Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proceedings of the Royal Society of London B: Biological Sciences, 276(1669), 2971–2977.

    Google Scholar 

  • Dal Sasso, G., Maritan, L., Usai, D., Angelini, I., & Artioli, G. (2014). Bone diagenesis at the micro-scale: Bone alteration patterns during multiple burial phases at Al Khiday (Khartoum, Sudan) between the Early Holocene and the II century AD. Palaeogeography, Palaeoclimatology, Paleoecology, 416, 30–42.

    Article  Google Scholar 

  • Dominiguez-Bello, M. G., De Jesus-Laboy, K. M., Shen, N., Cox, L. M., Amir, A., Gonzalez, A., Bokulich, N. A., Jin Song, S., Hoashi, M., Rivera-Vinas, J. I., Mendez, K., Knight, R., & Clemente, J. C. (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine, 22(3), 251–254.

    Google Scholar 

  • Economou, C. (2003). Behind the north wall of sleep. Microbial degradation of foetal and neonatal bone, with a case study from Bolsover. University of Sheffield, Unpublished MSc Dissertation.

    Google Scholar 

  • Fazekas, I. G., & Kosa, F. (1978). Forensic fetal osteology. Budapest: Akademiai Kiado.

    Google Scholar 

  • Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marín-Monfort, D., Sánchez, B., Geigl, E.-M., & Alonso, A. (2010). Early bone diagenesis in temperate environments Part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Paleoecology, 288, 62–81.

    Article  Google Scholar 

  • Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., Armanini, F., Truong, D. T., Manara, S., Zolfo, M., & Beghini, F. (2018). Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host & Microbe, 24(1), 133–145.

    Article  Google Scholar 

  • Foster, P. (1992). Excavations at the Parish Church of St. Mary & St. Lawrence. Bolsover: Creswell Heritage Trust Report.

    Google Scholar 

  • Gill-King, H. (1997). Chemical and ultrastructural aspects of decomposition. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 93–108). Boca Raton: CRC Press.

    Google Scholar 

  • Gill-Robinson, H. (1999). People and piglets: Peat and preservation. In B. Coles, J. Coles, & S. Jørgensen (Eds.), Bog bodies, sacred sites and wetland archaeology (pp. 99–102). Exeter: WARP.

    Google Scholar 

  • Gilmore, H. F., & Halcrow, S. E. (2014). Sense or sensationalism? Approaches to explaining high perinatal mortality in the past. In J. L. Thompson (Ed.), Tracing childhood: Bioarchaeological investigations of early lives in antiquity (pp. 123–138). Gainesville: University of Florida Press.

    Chapter  Google Scholar 

  • Gowland, R. L. (2015). Entangled lives: Implications of the developmental origins of health and disease hypothesis for bioarchaeology and the life course. American Journal of Physical Anthropology, 158(4), 530–540.

    Article  Google Scholar 

  • Gowland, R. L., & Chamberlain, A. T. (2002). A Bayesian approach to ageing perinatal skeletal material from archaeological sites: Implications for the evidence for infanticide in Roman Britain. Journal of Archaeological Science, 29, 677–685.

    Article  Google Scholar 

  • Gowland, R. L., Chamberlain, A. T., & Redfern, R. C. (2014). On the brink of being: Re-evaluating infant death and infanticide in Roman Britain. In M. Carroll & E.-J. Graham (Eds.), Infant Health and Death in Roman Italy and Beyond (pp. 69–88). Journal of Roman Archaeology Supplementary Series 98.). Ann Arbor: Journal of Roman Archaeology.

    Google Scholar 

  • Groer, M. W., Luciano, A. A., Dishaw, L. J., Ashmeade, T. L., Miller, E., & Gilbert, J. A. (2014). Development of the preterm infant gut microbiome: A research priority. Microbiome, 2, 38.

    Article  Google Scholar 

  • Grupe, G., & Dreses-Werringloer, U. (1993). Decomposition phenomena in thin-sections of excavated human bones. In G. Grupe & A. N. Garland (Eds.), Histology of ancient human bone: Methods and diagnosis (pp. 27–36). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Grupe, G., & Piepenbrink, H. (1989). Impact of microbial activity on trace element concentrations in excavated bones. Applied Geochemistry, 4(3), 293–298.

    Article  Google Scholar 

  • Guy, H., Masset, C., & Baud, C.-A. (1997). Infant taphonomy. International Journal of Osteoarchaeology, 7(3), 224–229.

    Article  Google Scholar 

  • Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine, Science, and the Law, 21(4), 243–266.

    Article  Google Scholar 

  • Halcrow, S. E., Tayles, N., & Livingstone, V. (2008). Infant death in late prehistoric Southeast Asia. Asian Perspectives, 47(2), 371–404.

    Article  Google Scholar 

  • Hall, A. H., Sherlock, E., & Sykes, D. (2014). Does micro-CT scanning damage DNA in museum specimens? Journal of Natural Science Collections, 2, 22–28.

    Google Scholar 

  • Hanson, D. B., & Buikstra, J. E. (1987). Histomorphological alteration in buried human bone from the lower Illinois Valley: Implications for palaeodietary research. Journal of Archaeological Science, 14(5), 549–563.

    Article  Google Scholar 

  • Haynes, S., Searle, J. B., Bretman, A., & Dobney, K. M. (2002). Bone preservation and ancient DNA: The application of screening methods for predicting DNA survival. Journal of Archaeological Science, 29(6), 585–592.

    Article  Google Scholar 

  • Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44(3), 319–328.

    Article  Google Scholar 

  • Hedges, R. E. M., Millard, A. R., & Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22(2), 201–209.

    Article  Google Scholar 

  • Hollund, H. I., Jans, M. M. E., Collins, M. J., Kars, H., Joosten, I., & Kars, S. M. (2012). What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, The Netherlands. International Journal of Osteoarchaeology, 22(5), 537–548.

    Article  Google Scholar 

  • Hollund, H. I., Arts, N., Jans, M. M. E., & Kars, H. (2015). Are teeth better? Histological characterisation of diagenesis in archaeological bone – tooth pairs and a discussion of the consequences for archaeometric sample selection and analyses. International Journal of Osteoarchaeology, 25(6), 901–911.

    Article  Google Scholar 

  • Immel, A., Le Cabec, A., Bonazzi, M., Herbig, A., Temming, H., Schuenemann, V. J., Bos, K. I., Langbein, F., Harvati, K., Bridault, A., Pion, G., Julien, M.-A., Krotova, O., Conard, N. J., Muenzel, S. C., Drucker, D. G., Viola, B., Hublin, J.-J., Tafforeau, P., & Krause, J. (2016). Effect of x-ray irradiation on ancient DNA in sub-fossil bones – Guidelines for safe x-ray imaging. Scientific Reports, 6, 32969.

    Article  Google Scholar 

  • Jakobsson, H. E., Abrahamsson, T. R., Jenmalm, M. C., Harris, K., Quince, C., Jernberg, C., Björkstén, B., Engstrand, L., & Andersson, A. F. (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4), 599–566.

    Article  Google Scholar 

  • Janaway, R. C. (1996). The decay of buried human remains and their associated material. In J. Hunter, C. Roberts, & A. Martin (Eds.), Studies in crime: An introduction to forensic archaeology (pp. 58–85). London: Routledge.

    Google Scholar 

  • Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31(1), 87–95.

    Article  Google Scholar 

  • Jackes, M., Sherburne, R., Lubell, D., Barker, C., & Wayman, M. (2001). Destruction of microstructure in archaeological bone: A case study from Portugal. International Journal of Osteoarchaeology, 11(6), 415–432.

    Article  Google Scholar 

  • Jiménez, E., Marin, M. L., Martin, R., Ordriozola, J. M., Olivares, M., Xaus, J., Fernández, L., & Rodriguez, J. M. (2008). Is meconium from healthy newborns actually sterile? Research in Microbiology, 159(3), 187–193.

    Article  Google Scholar 

  • Keal, L.L. (2005). Osteological analysis of the inhumed and disarticulated remains from Bantycock gypsum mine, Nottinghamshire: Unpublished Pre-Construct Archaeology Report.

    Google Scholar 

  • Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J., & Turner-Walker, G. (2018). Diagenesis of archaeological bone and tooth. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 21–37.

    Article  Google Scholar 

  • Kerr, N. (1994). Report of human remains from Bolsover. Derbyshire: University of Sheffield Unpublished Certificate of Archaeology Dissertation.

    Google Scholar 

  • Kontopoulos, I., Nystrom, P., & White, L. (2016). Experimental taphonomy: Post-mortem microstructural modifications in Sus scrofa domesticus bone. Forensic Science International, 266, 320–328.

    Article  Google Scholar 

  • Lee-Thorp, J. A., & Sealy, J. C. (2008). Beyond documenting diagenesis: The fifth international bone diagenesis workshop. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 129–133.

    Article  Google Scholar 

  • Lewis, M. E., & Gowland, R. L. (2007). Brief and precarious lives: Infant mortality in contrasting sites from medieval and post-medieval England (AD 850-1859). American Journal of Physical Anthropology, 134(1), 117–129.

    Article  Google Scholar 

  • Macchiarelli, R., Bondioli, L., Debénath, A., Mazurier, A., Tournepiche, J.-F., Birch, W., & Dean, C. (2006). How Neanderthal molar teeth grew. Nature, 444, 748–751.

    Article  Google Scholar 

  • Mackie, R. I., Sghir, A., & Gaskins, H. R. (1999). Developmental microbial ecology of the neonatal gastrointestinal tract. The American Journal of Clinical Nutrition, 69(S5), 1035–1045.

    Article  Google Scholar 

  • Marchiafava, V., Bonucci, E., & Ascenzi, A. (1974). Fungal osteoclasia: A model of dead bone resorption. Calcified Tissue Research, 14(1), 195–210.

    Article  Google Scholar 

  • Maat, G.J., Van Den Bos, R.P. and Aarents, M.J., 2001. Manual preparation of ground sections for the microscopy of natural bone tissue: update and modification of Frost’s ‘rapid manual method’. International Journal of Osteoarchaeology, 11(5), 366–374.

    Article  Google Scholar 

  • Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G., & de La Cochetiere, M.-F. (2013). Development of intestinal microbiota in infants and its impact on health. Trends in Microbiology, 21(4), 167–173.

    Article  Google Scholar 

  • Mays, S. (1993). Infanticide in Roman Britain. Antiquity, 67(257), 883–888.

    Article  Google Scholar 

  • Morse, J. M., Jehle, C., & Gamble, D. (1990). Initiating breastfeeding: A world survey of the timing of postpartum breastfeeding. International Journal of Nursing Studies, 27(3), 303–313.

    Article  Google Scholar 

  • Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. (2015). The infant microbiome development: Mom matters. Trends in Molecular Medicine, 21(2), 109–117.

    Article  Google Scholar 

  • Murphy, E. M. (2008). Deviant burial in the archaeological record. Oxford: Oxbow.

    Google Scholar 

  • Nicholson, R. A. (1996). Bone degradation, burial medium and species representation: Debunking the myths, an experimental-based approach. Journal of Archaeological Science, 23(4), 513–533.

    Article  Google Scholar 

  • Nielsen-Marsh, C. M., Smith, C. I., Jans, M. M. E., Nord, A., Kars, H., & Collins, M. J. (2007). Bone diagenesis in the European Holocene II: Taphonomic and environmental considerations. Journal of Archaeological Science, 34(9), 1523–1531.

    Article  Google Scholar 

  • Ottoni, C., Koon, H. E., Collins, M. J., Penkman, K. E., Rickards, O., & Craig, O. E. (2009). Preservation of ancient DNA in thermally damaged archaeological bone. Naturwissenschaften, 96(2), 267–278.

    Article  Google Scholar 

  • Pesquero, M. D., Ascaso, C., Alcalá, L., & Fernández-Jalvo, Y. (2010). A new taphonomic bioerosion in a Miocene lakeshore environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 192–198.

    Article  Google Scholar 

  • Polson, C. J., Gee, D. J., & Knight, B. (1985). The essentials of forensic medicine. Oxford: Pergamon Press.

    Google Scholar 

  • Powell, L. A., Redfern, R. C., Millard, A. R., & Gröke, D. R. (2014). Infant feeding practices in Roman London: The isotopic evidence. In P. M. Carroll & E.-J. Graham (Eds.), Infant health and death in Roman Italy and beyond (pp. 89–110). Journal of Roman Archaeology Supplementary Series 98.). Ann Arbor: Journal of Roman Archaeology.

    Google Scholar 

  • Pre-Construct Archaeology. (2005). Excavation of a Roman farmstead at Bantycock gypsum mine. Balderton: Unpublished Pre-Construct Archaeology Report.

    Google Scholar 

  • Redfern, R., & Roberts, C. (2005). Health in Romano-British urban communities: Reflections from the cemeteries. In D. N. Smith, M. Brickley, & K. W. McLaughlin Smith (Eds.), Fertile ground: Papers in honour of Susan Limbrey (pp. 115–129). Oxford: Oxbow Books.

    Google Scholar 

  • Rollo, F., Ubaldi, M., Marota, I., Luciani, S., & Ermini, L. (2002). DNA diagenesis: Effects of environment and time on human bone. Ancient Biomolecules, 4(1), 1–7.

    Article  Google Scholar 

  • Scheuer, J. L., Musgrave, J. H., & Evans, S. P. (1980). The estimation of late fetal and perinatal age from limb bone length by linear and logarithmic regression. Annals of Human Biology, 7(3), 257–265.

    Article  Google Scholar 

  • Schwartz, J. H., Houghton, F. D., Bondioli, L., & Macchiarelli, R. (2012). Bones, teeth, and estimating age of perinates: Carthaginian infant sacrifice revisited. Antiquity, 86(333), 738–745.

    Article  Google Scholar 

  • Scott, E. (1999). The Archaeology of Infancy and Infant Death. British Archaeology Reports 819. Oxford: Archaeopress.

    Google Scholar 

  • Smith, P., & Avishai, G. (2005). The use of dental criteria for estimating postnatal survival in skeletal remains of infants. Journal of Archaeological Science, 32(1), 83–89.

    Article  Google Scholar 

  • Smith, P., & Kahila, G. (1992). Identification of infanticide in archaeological sites: A case study from the Late Roman-Early Byzantine periods at Ashkelon, Israel. Journal of Archaeological Science, 19(6), 667–675.

    Article  Google Scholar 

  • Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., & Collins, M. J. (2007). Bone diagenesis in the European Holocene I: Patterns and mechanisms. Journal of Archaeological Science, 34(9), 1485–1493.

    Article  Google Scholar 

  • Sosa, C., Vispe, E., Núňez, C., Baeta, M., Casalod, Y., Bolea, M., Hedges, R. E. M., & Martinez-Jarreta, B. (2013). Association between ancient bone preservation and DNA yield: A multidisciplinary approach. American Journal of Physical Anthropology, 151(1), 102–109.

    Article  Google Scholar 

  • Tafforeau, P., & Smith, T. M. (2008). Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. Journal of Human Evolution, 54(2), 272–278.

    Article  Google Scholar 

  • Tripp, J. A., Squire, M. E., Hedges, R. E., & Stevens, R. E. (2018). Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 462–471.

    Article  Google Scholar 

  • Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44(3), 371–382.

    Article  Google Scholar 

  • Turner-Walker, G., & Jans, M. M. E. (2008). Reconstructing taphonomic histories using histological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 227–235.

    Article  Google Scholar 

  • Turner-Walker, G., & Syversen, U. (2002). Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeometry, 44(3), 461–468.

    Article  Google Scholar 

  • Turner-Walker, G., Nielsen-Marsh, C. M., Syversen, U., Kars, H., & Collins, M. J. (2002). Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. International Journal of Osteoarchaeology, 12(6), 407–414.

    Article  Google Scholar 

  • Walker, P. L., Johnson, J. R., & Lambert, P. M. (1988). Age and sex biases in the preservation of human skeletal remains. American Journal of Physical Anthropology, 76(2), 183–188.

    Article  Google Scholar 

  • White, L. (2009). The Microbiology of Death. University of Sheffield Unpublished PhD Thesis.

    Google Scholar 

  • White, L., & Booth, T. J. (2014). The origin of bacteria responsible for bioerosion to the internal bone microstructure: Results from experimentally-deposited pig carcasses. Forensic Science International, 239, 92–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Booth, T.J. (2020). Using Bone Histology to Identify Stillborn Infants in the Archaeological Record. In: Gowland, R., Halcrow, S. (eds) The Mother-Infant Nexus in Anthropology. Bioarchaeology and Social Theory. Springer, Cham. https://doi.org/10.1007/978-3-030-27393-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27393-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27392-7

  • Online ISBN: 978-3-030-27393-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics