Skip to main content

C-13 Hyperpolarized MR Spectroscopy for Metabolic Imaging of Brain Tumors

  • Chapter
  • First Online:

Abstract

Our understanding of the molecular basis of glioma initiation and maintenance has increased tremendously in recent years. This information needs to be incorporated into clinical patient management in order to make personalized neuro-oncology a reality. One promising approach is metabolic imaging, which can translate metabolic information that reflects the molecular features of glioma into noninvasive imaging biomarkers that can impact diagnosis, treatment selection, and monitoring of response to therapy. A novel metabolic imaging modality is hyperpolarized 13C-magnetic resonance spectroscopy (MRS) which can be used to noninvasively quantify metabolic fluxes in real time in vivo. The aim of this review is to provide an understanding of the current state of the art in glioma imaging using hyperpolarized 13C-MRS. We will review the various hyperpolarized 13C-MRS studies in preclinical glioma models as well as studies in brain tumor patients that highlight the promise and the challenges associated with translation of this technology to the clinic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu R, Page M, Solheim K, Fox S, Chang SM. Quality of life in adults with brain tumors: current knowledge and future directions. Neuro-Oncology. 2009;11(3):330–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML. Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst. 2011;103(2):117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rouse C, Gittleman H, Ostrom QT, Kruchko C, Barnholtz-Sloan JS. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology. 2016;18(1):70–7.

    Article  PubMed  Google Scholar 

  4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  5. Reifenberger G, Wirsching H-G, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas — implications for classification and therapy. Nat Rev Clin Oncol. 2016;14:434.

    Article  PubMed  CAS  Google Scholar 

  6. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.

    Article  CAS  PubMed  Google Scholar 

  7. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47(5):458–68.

    Article  CAS  PubMed  Google Scholar 

  10. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  11. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27(4):599–608.

    Article  CAS  PubMed  Google Scholar 

  13. Wakimoto H, Tanaka S, Curry WT, Loebel F, Zhao D, Tateishi K, et al. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res. 2014;20(11):2898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weller M, Weber RG, Willscher E, Riehmer V, Hentschel B, Kreuz M, et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol. 2015;129(5):679–93.

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  16. Viswanath P, Chaumeil MM, Ronen SM. Molecular imaging of metabolic reprograming in mutant IDH cells. Front Oncol. 2016;6:60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro-Oncology. 2016;18(2):160–72.

    Article  PubMed  Google Scholar 

  18. Venneti S, Thompson CB. Metabolic reprogramming in brain tumors. Annu Rev Pathol. 2017;12:515–45.

    Article  CAS  PubMed  Google Scholar 

  19. Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology. 2015;

    Google Scholar 

  20. Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD, Chan JA, et al. Lactate dehydrogenase a silencing in IDH mutant gliomas. Neuro-Oncology. 2014;16(5):686–95.

    Article  CAS  PubMed  Google Scholar 

  21. Viswanath P, Najac C, Izquierdo-Garcia JL, Pankov A, Hong C, Eriksson P, et al. Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget. 2016;7(23):34942–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Izquierdo-Garcia JL, Viswanath P, Eriksson P, Cai L, Radoul M, Chaumeil MM, et al. IDH1 mutation induces reprogramming of pyruvate metabolism. Cancer Res. 2015;75:2999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22):8981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19(7):901–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McBrayer SK, Mayers JR, DiNatale GJ, Shi DD, Khanal J, Chakraborty AA, et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell. 2018;175(1):101–16.. e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y, Daemen A, et al. Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc Natl Acad Sci. 2014;111(39):14217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Viswanath P, Radoul M, Izquierdo-Garcia JL, Ong WQ, Luchman HA, Cairncross JG, et al. 2-hydroxyglutarate-mediated autophagy of the endoplasmic reticulum leads to an unusual downregulation of phospholipid biosynthesis in mutant IDH1 gliomas. Cancer Res. 2018;78:2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Viswanath P, Radoul M, Izquierdo-Garcia JL, Luchman HA, Gregory Cairncross J, Pieper RO, et al. Mutant IDH1 gliomas downregulate phosphocholine and phosphoethanolamine synthesis in a 2-hydroxyglutarate-dependent manner. Cancer Metab. 2018;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Esmaeili M, Hamans BC, Navis AC, van Horssen R, Bathen TF, Gribbestad IS, et al. IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res. 2014;74(17):4898–907.

    Article  CAS  PubMed  Google Scholar 

  30. Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X, et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 2014;74(12):3317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F, Lelic N, et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell. 2015;28(6):773–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wahl DR, Dresser J, Wilder-Romans K, Parsels JD, Zhao SG, Davis M, et al. Glioblastoma therapy can be augmented by targeting IDH1-mediated NADPH biosynthesis. Cancer Res. 2017;77(4):960–70.

    Article  CAS  PubMed  Google Scholar 

  33. Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015;75(22):4790–802.

    Article  CAS  PubMed  Google Scholar 

  34. Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27(3):475–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ryken TC, Aygun N, Morris J, Schweizer M, Nair R, Spracklen C, et al. The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2014;118(3):435–60.

    Article  CAS  Google Scholar 

  36. Newton HB, Ray-Chaudhury A, Cavaliere R. Brain tumor imaging and cancer management: the neuro-oncologists perspective. Top Magn Reson Imaging. 2006;17(2):127–36.

    Article  PubMed  Google Scholar 

  37. Nelson SJ. Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. NMR Biomed. 2011;24(6):734–49.

    PubMed  PubMed Central  Google Scholar 

  38. Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro-Oncology. 2015;17(9):1188–98.

    PubMed  PubMed Central  Google Scholar 

  39. Shah N, Sattar A, Benanti M, Hollander S, Cheuck L. Magnetic resonance spectroscopy as an imaging tool for cancer: a review of the literature. J Am Osteopath Assoc. 2006;106(1):23–7.

    PubMed  Google Scholar 

  40. Sorensen AG, Patel S, Harmath C, Bridges S, Synnott J, Sievers A, et al. Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol. 2001;19(2):551–7.

    Article  CAS  PubMed  Google Scholar 

  41. Galanis E, Buckner JC, Maurer MJ, Sykora R, Castillo R, Ballman KV, et al. Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro-Oncology. 2006;8(2):156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng. 2005;7:287–326.

    Article  CAS  PubMed  Google Scholar 

  43. Glunde K, Bhujwalla ZM. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol. 2011;38(1):26–41.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luks TL, McKnight TR, Jalbert LE, Williams A, Neill E, Lobo KA, et al. Relationship of in vivo MR parameters to histopathological and molecular characteristics of newly diagnosed, nonenhancing lower-grade gliomas. Transl Oncol. 2018;11(4):941–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Elkhaled A, Jalbert L, Constantin A, Yoshihara HA, Phillips JJ, Molinaro AM, et al. Characterization of metabolites in infiltrating gliomas using ex vivo (1)H high-resolution magic angle spinning spectroscopy. NMR Biomed. 2014;27(5):578–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elkhaled A, Jalbert LE, Phillips JJ, Yoshihara HA, Parvataneni R, Srinivasan R, et al. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med. 2012;4(116):116ra5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jalbert LE, Elkhaled A, Phillips JJ, Neill E, Williams A, Crane JC, et al. Metabolic profiling of IDH mutation and malignant progression in infiltrating glioma. Sci Rep. 2017;7:44792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li X, Jin H, Lu Y, Oh J, Chang S, Nelson SJ. Identification of MRI and 1H MRSI parameters that may predict survival for patients with malignant gliomas. NMR Biomed. 2004;17(1):10–20.

    Article  PubMed  Google Scholar 

  49. Tarnawski R, Sokol M, Pieniazek P, Maciejewski B, Walecki J, Miszczyk L, et al. 1H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas. Int J Radiat Oncol Biol Phys. 2002;52(5):1271–6.

    Article  PubMed  Google Scholar 

  50. Crawford FW, Khayal IS, McGue C, Saraswathy S, Pirzkall A, Cha S, et al. Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J Neuro-Oncol. 2009;91(3):337–51.

    Article  Google Scholar 

  51. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Linninger A, Hartung GA, Liu BP, Mirkov S, Tangen K, Lukas RV, et al. Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro-Oncology. 2018;20(9):1197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodrigues TB, Cerdán S. 13C MRS: an outstanding tool for metabolic studies. Concepts in Magn Reson A. 2005;27A(1):1–16.

    Article  CAS  Google Scholar 

  54. Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL. (13)C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed. 2011;24(8):943–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chaumeil MM, Najac C, Ronen SM. Studies of metabolism using (13)C MRS of hyperpolarized probes. Methods Enzymol. 2015;561:1–71.

    Article  CAS  PubMed  Google Scholar 

  56. Lumata L, Yang C, Ragavan M, Carpenter N, DeBerardinis RJ, Merritt ME. Hyperpolarized (13)C magnetic resonance and its use in metabolic assessment of cultured cells and perfused organs. Methods Enzymol. 2015;561:73–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abragam A, Goldman M. Principles of dynamic nuclear polarisation. Rep Prog Phys. 1978;41(395).

    Article  CAS  Google Scholar 

  58. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100(18):10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Golman K, in’t Zandt R, Thaning M. Real-time metabolic imaging. Proc Natl Acad Sci U S A. 2006;103(30):11270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Comment A, Merritt ME. Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry. 2014;53(47):7333–57.

    Article  CAS  PubMed  Google Scholar 

  61. Najac C, Ronen SM. MR molecular imaging of brain cancer metabolism using hyperpolarized 13C magnetic resonance spectroscopy. Top Magn Reson Imaging. 2016;25(5):187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjaer-Larsen JH, Nielsen CH, et al. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging. 2015;5(5):548–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Halestrap AP. The monocarboxylate transporter family--structure and functional characterization. IUBMB Life. 2012;64(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology. 2013;15(2):172–88.

    Article  CAS  PubMed  Google Scholar 

  65. Miller JJ, Grist JT, Serres S, Larkin JR, Lau AZ, Ray K, et al. (13)C pyruvate transport across the blood-brain barrier in preclinical hyperpolarised MRI. Sci Rep. 2018;8(1):15082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hurd RE, Yen YF, Mayer D, Chen A, Wilson D, Kohler S, et al. Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethyl pyruvate. Magn Reson Med. 2010;63(5):1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marjanska M, Shestov AA, Deelchand DK, Kittelson E, Henry PG. Brain metabolism under different anesthetic conditions using hyperpolarized [1-(13) C]pyruvate and [2-(13) C]pyruvate. NMR Biomed. 2018:e4012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Park I, Larson PEZ, Tropp JL, Carvajal L, Reed G, Bok R, et al. Dynamic hyperpolarized carbon-13 MR metabolic imaging of nonhuman primate brain. Magn Reson Med. 2014;71(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  69. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.

    Article  CAS  PubMed  Google Scholar 

  70. Roche TE, Hiromasa Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci. 2007;64(7–8):830–49.

    Article  CAS  PubMed  Google Scholar 

  71. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

    Article  PubMed  CAS  Google Scholar 

  72. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 2008;283(42):28106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Prabhu A, Sarcar B, Miller CR, Kim S-H, Nakano I, Forsyth P, et al. Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro-Oncology. 2015;17(9):1220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  75. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Babic I, Anderson ES, Tanaka K, Guo D, Masui K, Li B, et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 2013;17(6):1000–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park I, Larson PE, Zierhut ML, Hu S, Bok R, Ozawa T, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology. 2010;12(2):133–44.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Park I, Hu S, Bok R, Ozawa T, Ito M, Mukherjee J, et al. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging. Magn Reson Med. 2013;70(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  80. Mair R, Wright AJ, Ros S, Hu DE, Booth T, Kreis F, et al. Metabolic imaging detects low levels of glycolytic activity that vary with levels of c-Myc expression in patient-derived xenograft models of glioblastoma. Cancer Res. 2018;78(18):5408–18.

    Article  CAS  PubMed  Google Scholar 

  81. Park I, Mukherjee J, Ito M, Chaumeil MM, Jalbert LE, Gaensler K, et al. Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells. Cancer Res. 2014;74(23):7115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Day SE, Kettunen MI, Cherukuri MK, Mitchell JB, Lizak MJ, Morris HD, et al. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med. 2011;65(2):557–63.

    Article  CAS  PubMed  Google Scholar 

  83. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10(3):143–53.

    Article  CAS  PubMed  Google Scholar 

  84. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28(6):1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, et al. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res. 2010;70(4):1296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM. Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro-Oncology. 2012;14(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  87. Chaumeil MM, Ozawa T, Park I, Scott K, James CD, Nelson SJ, et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. NeuroImage. 2012;59(1):193–201.

    Article  CAS  PubMed  Google Scholar 

  88. Radoul M, Chaumeil MM, Eriksson P, Wang AS, Phillips JJ, Ronen SM. MR studies of glioblastoma models treated with dual PI3K/mTOR inhibitor and temozolomide:metabolic changes are associated with enhanced survival. Mol Cancer Ther. 2016;15(5):1113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park JM, Recht LD, Josan S, Merchant M, Jang T, Yen YF, et al. Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized (13)C magnetic resonance spectroscopic imaging. Neuro-Oncology. 2013;15(4):433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31):31ra4.

    Article  CAS  Google Scholar 

  91. Park JM, Spielman DM, Josan S, Jang T, Merchant M, Hurd RE, et al. Hyperpolarized (13)C-lactate to (13)C-bicarbonate ratio as a biomarker for monitoring the acute response of anti-vascular endothelial growth factor (anti-VEGF) treatment. NMR Biomed. 2016;29(5):650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dang L, Su SM. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: from basic discovery to therapeutics development. Annu Rev Biochem. 2017;86:305.

    Article  CAS  PubMed  Google Scholar 

  93. Chaumeil MM, Radoul M, Najac C, Eriksson P, Viswanath P, Blough MD, et al. Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: implications for diagnosis and response monitoring. Neuroimage Clin. 2016;12:180–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Park JM, Josan S, Grafendorfer T, Yen Y-F, Hurd RE, Spielman DM, et al. Measuring mitochondrial metabolism in rat brain in vivo using MR Spectroscopy of hyperpolarized [2-13C]pyruvate. NMR Biomed. 2013;26(10):1197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Park JM, Josan S, Jang T, Merchant M, Watkins R, Hurd RE, et al. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model. Magn Reson Med. 2016;75(3):973–84.

    Article  CAS  PubMed  Google Scholar 

  96. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 2012;26(18):2038–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chaumeil MM, Larson PE, Woods SM, Cai L, Eriksson P, Robinson AE, et al. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res. 2014;74(16):4247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chaumeil MM, Larson PE, Yoshihara HA, Danforth OM, Vigneron DB, Nelson SJ, et al. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat Commun. 2013;4:2429.

    Article  PubMed  CAS  Google Scholar 

  101. Zhu A, Lee D, Shim H. Metabolic PET imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Allouche-Arnon H, Wade T, Waldner LF, Miller VN, Gomori JM, Katz-Brull R, et al. In vivo magnetic resonance imaging of glucose - initial experience. Contrast Media Mol Imaging. 2013;8(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  103. Harris T, Degani H, Frydman L. Hyperpolarized 13C NMR studies of glucose metabolism in living breast cancer cell cultures. NMR Biomed. 2013;26(12):1831–43.

    Article  CAS  PubMed  Google Scholar 

  104. Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med. 2014;20(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  105. Timm KN, Hartl J, Keller MA, Hu DE, Kettunen MI, Rodrigues TB, et al. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells. Magn Reson Med. 2015;74(6):1543–7.

    Article  CAS  PubMed  Google Scholar 

  106. Christensen CE, Karlsson M, Winther JR, Jensen PR, Lerche MH. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes. J Biol Chem. 2014;289(4):2344–52.

    Article  CAS  PubMed  Google Scholar 

  107. Mishkovsky M, Anderson B, Karlsson M, Lerche MH, Sherry AD, Gruetter R, et al. Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized (13)C magnetic resonance. Sci Rep. 2017;7(1):11719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90(3):927–63.

    Article  PubMed  Google Scholar 

  109. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass R, et al. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro-Oncology. 2016;18(9):1219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, et al. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol. 2010;119(4):487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li K, Ouyang L, He M, Luo M, Cai W, Tu Y, et al. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway. Oncotarget. 2017;8(17):28865–79.

    PubMed  PubMed Central  Google Scholar 

  113. Mohrenz IV, Antonietti P, Pusch S, Capper D, Balss J, Voigt S, et al. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis. 2013;18(11):1416–25.

    Article  CAS  PubMed  Google Scholar 

  114. Fu Y, Zheng S, Zheng Y, Huang R, An N, Liang A, et al. Glioma derived isocitrate dehydrogenase-2 mutations induced up-regulation of HIF-1alpha and beta-catenin signaling: possible impact on glioma cell metastasis and chemo-resistance. Int J Biochem Cell Biol. 2012;44(5):770–5.

    Article  CAS  PubMed  Google Scholar 

  115. Moreno KX, Harrison CE, Merritt ME, Kovacs Z, Malloy CR, Sherry AD. Hyperpolarized delta-[1-(13) C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed. 2017;30(6).

    Google Scholar 

  116. Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer. Ann Rev Cancer Biol. 2017;1(1):79–98.

    Article  Google Scholar 

  117. Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012;83(8):1005–12.

    Article  CAS  PubMed  Google Scholar 

  118. Ogunrinu TA, Sontheimer H. Hypoxia increases the dependence of glioma cells on glutathione. J Biol Chem. 2010;285(48):37716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu Z, Du S, Du Y, Ren J, Ying G, Yan Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J Neurochem. 2018;144(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  120. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483(7390):484–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shi J, Sun B, Shi W, Zuo H, Cui D, Ni L, et al. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol. 2015;36(2):655–62.

    Article  CAS  PubMed  Google Scholar 

  122. Keshari KR, Kurhanewicz J, Bok R, Larson PE, Vigneron DB, Wilson DM. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci U S A. 2011;108(46):18606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bohndiek SE, Kettunen MI, Hu DE, Kennedy BW, Boren J, Gallagher FA, et al. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc. 2011;133(30):11795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, et al. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci U S A. 2001;98(20):11720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qin H, Carroll VN, Sriram R, Villanueva-Meyer JE, von Morze C, Wang ZJ, et al. Imaging glutathione depletion in the rat brain using ascorbate-derived hyperpolarized MR and PET probes. Sci Rep. 2018;8(1):7928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Patterson JW, Mastin DW. Some effects of dehydroascorbic acid on the central nervous system. Am J Phys. 1951;167(1):119–26.

    Article  CAS  Google Scholar 

  127. Corti A, Franzini M, Paolicchi A, Pompella A. Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting. Anticancer Res. 2010;30(4):1169–81.

    CAS  PubMed  Google Scholar 

  128. Bui TT, Nitta RT, Kahn SA, Razavi SM, Agarwal M, Aujla P, et al. γ-Glutamyl transferase 7 is a novel regulator of glioblastoma growth. BMC Cancer. 2015;15:225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Schafer C, Fels C, Brucke M, Holzhausen HJ, Bahn H, Wellman M, et al. Gamma-glutamyl transferase expression in higher-grade astrocytic glioma. Acta Oncol. 2001;40(4):529–35.

    Article  CAS  PubMed  Google Scholar 

  130. Nishihara T, Yoshihara HAI, Nonaka H, Takakusagi Y, Hyodo F, Ichikawa K, et al. Direct monitoring of γ-glutamyl transpeptidase activity in vivo using a hyperpolarized 13C-labeled molecular probe. Angew Chem Int Ed. 2016;55(36):10626–9.

    Article  CAS  Google Scholar 

  131. Vannucci RC, Brucklacher RM. Cerebral mitochondrial redox states during metabolic stress in the immature rat. Brain Res. 1994;653(1–2):141–7.

    Article  CAS  PubMed  Google Scholar 

  132. von Morze C, Ohliger MA, Marco-Rius I, Wilson DM, Flavell RR, Pearce D, et al. Direct assessment of renal mitochondrial redox state using hyperpolarized (13) C-acetoacetate. Magn Reson Med. 2018;79(4):1862–9.

    Article  CAS  Google Scholar 

  133. Miller JJ, Ball DR, Lau AZ, Tyler DJ. Hyperpolarized ketone body metabolism in the rat heart. NMR Biomed. 2018:e3912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Chen W, Khemntong C, Jiang W, Malloy CR, Sherry DA. Metabolism of hyperpolarized 13C-acetoacetate/ß-hydroxybutyrate reveals mitochondrial redox state in perfused rat hearts. Singapore: International Society for Magnetic Resonance in Medicine; 2016.

    Google Scholar 

  135. Najac C, Radoul M, Le Page LM, Batsios G, Viswanath P, Gillespie AM, Ronen SM. Hyperpolarized 13C ß-hydroxybutyrate/acetoacetate as a biomarker for non-invasive monitoring of NAD+/NADH status in glioblastoma. Paris, France: International Society for Magnetic Resonance in Medicine; 2018.

    Google Scholar 

  136. Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013;3(8).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17(12):1556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cabella C, Karlsson M, Canape C, Catanzaro G, Colombo Serra S, Miragoli L, et al. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-(13)C]glutamine. J Magn Reson. 2013;232:45–52.

    Article  CAS  PubMed  Google Scholar 

  140. Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med. 2008;60(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  141. Salamanca-Cardona L, Shah H, Poot AJ, Correa FM, Di Gialleonardo V, Lui H, et al. In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in IDH1/2 mutant tumors. Cell Metab. 2017;26(6):830–41.. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee W-J, Hawkins RA, Viña JR, Peterson DR. Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Phys Cell Phys. 1998;274(4):C1101–C7.

    Article  CAS  Google Scholar 

  143. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 2013;5(198):198ra08.

    Article  CAS  Google Scholar 

  144. Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, et al. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res. 2016;119(11):1177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Park I, Larson PEZ, Gordon JW, Carvajal L, Chen HY, Bok R, et al. Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med. 2018;80:864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Miloushev VZ, Granlund KL, Boltyanskiy R, Lyashchenko SK, DeAngelis LM, Mellinghoff IK, et al. Metabolic imaging of the human brain with hyperpolarized 13C pyruvate demonstrates 13C lactate production in brain tumor patients. Cancer Res. 2018;78:3755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chung B, Chen HY, Gordon J, Mammoli D, Sriram R, Autry A, Chaumeil M, Shin P, Slater J, Tan CT, Suszczynski C, Bok R, Ronen S, Larson PEZ, Kurhanewicz J, Vigneron DB. First-in-man hyperpolarized [2-13C]pyruvate MR studies of human brain metabolism. Seattle: World Molecular Imaging Conference; 2018.

    Google Scholar 

Download references

Financial Support

This work was supported by the following grants: NIH R01CA172845 (SMR), NIH R01CA197254 (SMR), UCSF Brain Tumor Loglio Collective (SMR), NICO (SMR), NIH R01CA127612 (YL), NIH P01CA118816 (YL), NIH P41EB0341598 (YL), and NIH P50CA97257 (PV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina M. Ronen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viswanath, P., Li, Y., Ronen, S.M. (2020). C-13 Hyperpolarized MR Spectroscopy for Metabolic Imaging of Brain Tumors. In: Pope, W. (eds) Glioma Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-27359-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27359-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27358-3

  • Online ISBN: 978-3-030-27359-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics