Skip to main content

New Developments in Theory, Algorithms, and Applications for Pythagorean–Hodograph Curves

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 35))

Abstract

The past decade has witnessed sustained interest in elucidating the basic theory of Pythagorean–hodograph (PH) curves, developing construction algorithms, formulating generalizations, and investigating applications. The rapid pace of this activity, encompassing diverse lines of inquiry, makes it desirable at this point to take a broad perspective of these recent developments, and assess their relationships. In the present article, we aim to address this need by categorizing recent results into a number of broad themes—extensions and specializations of the basic polynomial PH curves; rational orthonormal frames along spatial PH curves; construction and analysis algorithms for PH curves; surface design based on PH curves; and the use of PH curves in practical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The use of the basis vector \(\mathbf{i}\) in the product (5) is only conventional—any other unit vector \(\mathbf{u}\) may be used instead, corresponding to a change of coordinates.

  2. 2.

    Since they have just a one–parameter family of tangent planes, the developable surfaces require a separate treatment.

  3. 3.

    For the rotation–minimizing motions with fixed initial/final orientations in [58, 71] the curve was not defined a priori, but was rather an outcome of the construction procedure.

  4. 4.

    The assumption that the object is static and situated at the origin is not essential, since only the relative position of the object and camera matter.

  5. 5.

    To exploit the advantageous features of PH splines, one must also store the complex or quaternion pre–image polynomials of each spline segment—see Sects. 5.4 and 7.3.

  6. 6.

    This is a consequence of the fact that, under the map (5), the pre–image of a point in \(\mathbb {R}^3\) is a circle in the quaternion space \(\mathbb {H}\)—see [68].

  7. 7.

    The system of lines of curvature is singular at umbilic points, where the principal directions are undefined [144].

  8. 8.

    The expression (36) assumes that these constants are the same for each machine axis, but this assumption is not essential.

References

  1. Ait-Haddou, R., Herzog, W., Biard, L.: Pythagorean-hodograph ovals of constant width. Comput. Aided Geom. Des. 25, 258–273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ait-Haddou, R., Mazure, M.-L.: Sparse Pythagorean-hodograph curves. Comput. Aided Geom. Des. 55, 84–103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albrecht, G., Beccari, C.V., Canonne, J.-C., Romani, L.: Planar Pythagorean-hodograph B-spline curves. Comput. Aided Geom. Des. 57, 57–77 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albrecht, G., Farouki, R.T.: Construction of \(C^2\) Pythagorean-hodograph interpolating splines by the homotopy method. Adv. Comput. Math. 5, 417–442 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amamra, A.: Smooth head tracking for virtual reality applications. Signal Image Video Proc. 11, 479–486 (2017)

    Article  Google Scholar 

  6. Askari, A., Mortazavi, M., Talebi, H.A., Motamedi, A.: A new approach in UAV path planning using Bézier-Dubins continuous curvature path. J. Aerosp. Eng. 230, 1103–1113 (2016)

    Google Scholar 

  7. Barton, M., Jüttler, B., Wang, W.: Construction of rational curves with rational rotation-minimizing frames via Möbius transformations. Mathematical Methods for Curves and Surfaces 2008. Lecture Notes in Computer Science, vol. 5862, pp. 15–25. Springer, Berlin (2010)

    Chapter  MATH  Google Scholar 

  8. Bastl, B., Bizzarri, M., Krajnc, M., Lavicka, M., Siaba, K., Sir, Z., Vitrih, V., Zagar, E.: \(C^1\) Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs. J. Comput. Appl. Math. 257, 65–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bastl, B., Bizzarri, M., Ferjancic, K., Kovac, B., Krajnc, M., Lavicka, M., Michalkova, K., Sir, Z., Zagar, E.: \(C^2\) Hermite interpolation by Pythagorean-hodograph quintic triarcs. Comput. Aided Geom. Des. 31, 412–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bastl, B., Jüttler, B., Lavicka, M., Kosinka, J.: Computing exact rational offsets of quadratic triangular Bézier surface patches. Comput. Aided Des. 40, 197–209 (2008)

    Article  MATH  Google Scholar 

  11. Bastl, B., Slaba, K., Byrtus, M.: Planar \(C^1\) Hermite interpolation with uniform and non-uniform TC biarcs. Comput. Aided Geom. Des. 30, 58–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beltran, J.V., Monterde, J.: A characterization of quintic helices. J. Comput. Appl. Math. 206, 116–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biard, L., Farouki, R.T., Szafran, N.: Construction of rational surface patches bounded by lines of curvature. Comput. Aided Geom. Des. 27, 359–371 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Birkhoff, G., de Boor, C.: Piecewise polynomial interpolation and approximation. In: Garabedian, H.L. (ed.) Approximation of Functions, pp. 164–190. Elsevier, Amsterdam (1965)

    Google Scholar 

  15. Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bizzarri, M., Lavicka, M., Kosinka, J.: Medial axis transforms yielding rational envelopes. Comput. Aided Geom. Des. 46, 92–102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bizzarri, M., Lavicka, M., Vrsek, J., Kosinka, J.: A direct and local method for computing polynomial Pythagorean-normal patches with global \(G^1\) continuity. Comput. Aided Des. 102, 44–51 (2018)

    Article  MathSciNet  Google Scholar 

  18. Blum, H.: New algorithm for medial axis transform of plane domain. Graph. Models Image Proc. 59, 463–483 (1967)

    Google Scholar 

  19. Bruyninckx, H., Reynaerts, D.: Path planning for mobile and hyper–redundant robots using Pythagorean–hodograph curves. In: Proceedings, International Conference on Advanced Robotics (ICAR 97), Monterey, CA, pp. 595–600 (1997)

    Google Scholar 

  20. Byrtus, M., Bastl, B.: \(G^1\) Hermite interpolation by PH cubics revisited. Comput. Aided Geom. Des. 27, 622–630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, C.C., Shieh, S.S., Cheng, M.Y., Su, K.H.: Vision-based Pythagorean hodograph spline command generation and adaptive disturbance compensation for planar contour tracking. Int. J. Adv. Manuf. Tech. 65, 1185–1199 (2013)

    Article  Google Scholar 

  22. Cheng, C.C.-A., Sakkalis, T.: On new types of rational rotation–minimizing frame space curves. J. Symb. Comput. 74, 400–407 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Choe, R., Puig-Navarro, J., Cichella, V., Xargay, E., Hovakimyan, N.: Trajectory generation using spatial Pythagorean hodograph Bézier curves. In: Proceedings, AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL (2015)

    Google Scholar 

  24. Choe, R., Puig-Navarro, J., Cichella, V., Xargay, E., Hovakimyan, N.: Cooperative trajectory generation using Pythagorean hodograph Bézier curves. J. Guid. Control Dyn. 39, 1744–1763 (2015)

    Article  Google Scholar 

  25. Choi, H.I., Farouki, R.T., Kwon, S.H., Moon, H.P.: Topological criterion for selection of quintic Pythagorean-hodograph Hermite interpolants. Comput. Aided Geom. Des. 25, 411–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Choi, H.I., Han, C.Y.: Euler-Rodrigues frames on spatial Pythagorean-hodograph curves. Comput. Aided Geom. Des. 19, 603–620 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Choi, H.I., Han, C.Y., Moon, H.P., Roh, K.H., Wee, N.-S.: Medial axis transform and offset curves by Minkowski Pythagorean hodograph curves. Comput. Aided Des. 31, 59–72 (1999)

    Article  MATH  Google Scholar 

  28. Choi, H.I., Kwon, S.H.: Absolute hodograph winding number and planar PH quintic splines. Comput. Aided Geom. Des. 25, 230–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Choi, H.I., Moon, H.P.: Weierstrass-type approximation theorems with Pythagorean hodograph curves. Comput. Aided Geom. Des. 25, 305–319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation, and rational parameterization of curves and surfaces. Adv. Comput. Math. 17, 5–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chu, K., Kim, J., Jo, K., Sunwoo, M.: Real-time path planning of autonomous vehicles for unstructured road navigation. Int. J. Autom. Tech. 16, 653–668 (2015)

    Article  Google Scholar 

  32. Cobb, J.E.: Letter to the editor. Comput. Aided Geom. Des. 6, 85–86 (1989)

    Article  MATH  Google Scholar 

  33. Dietz, R., Hoschek, J., Jüttler, B.: An algebraic approach to curves and surfaces on the sphere and on other quadrics. Comput. Aided Geom. Des. 10, 211–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Donatelli, M., Giannelli, C., Mugnaini, D., Sestini, A.: Curvature continuous path planning and path finding based on PH splines with tension. Comput. Aided Des. 88, 14–30 (2017)

    Article  Google Scholar 

  35. Dong, B., Farouki, R.T.: Algorithm 952: PHquintic: a library of basic functions for the construction and analysis of planar quintic Pythagorean–hodograph curves. ACM Trans. Math. Softw. 41, Article 28 (2015)

    Article  MATH  Google Scholar 

  36. Ernesto, C.A., Farouki, R.T.: Solution of inverse dynamics problems for contour error minimization in CNC machines. Int. J. Adv. Manuf. Tech. 49, 589–604 (2010)

    Article  Google Scholar 

  37. Fang, L., Wang, G.: Geometric characteristics of planar quintic Pythagorean-hodograph curves. J. Comput. Appl. Math. 330, 117–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 4th edn. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  39. Farouki, R.T.: The conformal map \(z \rightarrow z^2\) of the hodograph plane. Comput. Aided Geom. Des. 11, 363–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Farouki, R.T.: The elastic bending energy of Pythagorean-hodograph curves. Comput. Aided Geom. Des. 13, 227–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Farouki, R.T.: Pythagorean–hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, pp. 405–427, Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  42. Farouki, R.T.: Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graph. Models 64, 382–395 (2002)

    Article  MATH  Google Scholar 

  43. Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  44. Farouki, R.T.: Quaternion and Hopf map characterizations for the existence of rational rotation-minimizing frames on quintic space curves. Adv. Comput. Math. 33, 331–348 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Farouki, R.T.: Arc lengths of rational Pythagorean-hodograph curves. Comput. Aided Geom. Des. 34, 1–4 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Farouki, R.T.: Rational rotation-minimizing frames – recent advances and open problems. Appl. Math. Comput. 272, 80–91 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Farouki, R.T.: Construction of \(G^1\) planar Hermite interpolants with prescribed arc lengths. Comput. Aided Geom. Des. 46, 64–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Farouki, R.T.: Helical polynomial curves interpolating \(G^1\) data with prescribed axes and pitch angles. Comput. Aided Geom. Des. 56, 4–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Farouki, R.T.: Existence of Pythagorean–hodograph quintic interpolants to spatial \(G^1\) Hermite data with prescribed arc lengths. J. Symb. Comput. 95, 202–216 (2019)

    Google Scholar 

  50. Farouki, R.T., al-Kandari, M., Sakkalis, T.: Structural invariance of spatial Pythagorean hodographs. Comput. Aided Geom. Des. 19, 395–407 (2002)

    Article  MathSciNet  Google Scholar 

  51. Farouki, R.T., al-Kandari, M., Sakkalis, T.: Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves. Adv. Comput. Math. 17, 369–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Farouki, R.T., Dospra, P., Sakkalis, T.: Scalar-vector algorithm for the roots of quadratic quaternion polynomials, and the characterization of quintic rational rotation-minimizing frame curves. J. Symb. Comput. 58, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Farouki, R.T., Gentili, G., Giannelli, C., Sestini, A., Stoppato, C.: Solution of a quadratic quaternion equation with mixed coefficients. J. Symb. Comput. 74, 140–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Farouki, R.T., Gentili, G., Giannelli, C., Sestini, A., Stoppato, C.: A comprehensive characterization of the set of polynomial curves with rational rotation-minimizing frames. Adv. Comput. Math. 43, 1–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Farouki, R.T., Giannelli, C.: Spatial camera orientation control by rotation-minimizing directed frames. Comput. Anim. Virtual Worlds 20, 457–472 (2009)

    Article  Google Scholar 

  56. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures. Comput. Aided Geom. Des. 25, 274–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Quintic space curves with rational rotation-minimizing frames. Comput. Aided Geom. Des. 26, 580–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Design of rational rotation-minimizing rigid body motions by Hermite interpolation. Math. Comput. 81, 879–903 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Farouki, R.T., Giannelli, C., Mugnaini, D., Sestini, A.: Path planning with Pythagorean-hodograph curves for unmanned or autonomous vehicles. J. Aerosp. Eng. 232, 1361–1372 (2018)

    Google Scholar 

  60. Farouki, R.T., Giannelli, C., Sampoli, M.L., Sestini, A.: Rotation-minimizing osculating frames. Comput. Aided Geom. Des. 31, 27–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Farouki, R.T., Giannelli, C., Sestini, A.: Helical polynomial curves and double Pythagorean hodographs I. Quaternion and Hopf map representations. J. Symb. Comput. 44, 161–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Farouki, R.T., Giannelli, C., Sestini, A.: Helical polynomial curves and double Pythagorean hodographs II. Enumeration of low–degree curves. J. Symb. Comput. 44, 307–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Farouki, R.T., Giannelli, C., Sestini, A.: Geometric design using space curves with rational rotation–minimizing frames. In: Daehlen, M., et al. (eds.) Lecture Notes in Computer Science, vol. 5862, pp. 194–208 (2010)

    Chapter  MATH  Google Scholar 

  64. Farouki, R.T., Giannelli, C., Sestini, A.: An interpolation scheme for designing rational rotation-minimizing camera motions. Adv. Comput. Math. 38, 63–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Farouki, R.T., Giannelli, C., Sestini, A.: Identification and “reverse engineering” of Pythagorean-hodograph curves. Comput. Aided Geom. Des. 34, 21–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Farouki, R.T., Giannelli, C., Sestini, A.: Local modification of Pythagorean-hodograph quintic spline curves using the B-spline form. Adv. Comput. Math. 42, 199–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Farouki, R.T., Giannelli, C., Sestini, A.: Rational minimal–twist rigid body motions along space curves with rotation–minimizing Euler–Rodrigues frames (Preprint)

    Google Scholar 

  68. Farouki, R.T., Gutierrez, R.: Geometry of the ringed surfaces in \(R^4\) that generate spatial Pythagorean hodographs. J. Symb. Comput. 37, 87–103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Farouki, R.T., Han, C.Y.: Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves. Comput. Aided Geom. Des. 20, 435–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  70. Farouki, R.T., Han, C.Y., Manni, C., Sestini, A.: Characterization and construction of helical polynomial space curves. J. Comput. Appl. Math. 162, 365–392 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  71. Farouki, R.T., Han, C.Y., Dospra, P., Sakkalis, T.: Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants. Comput. Aided Geom. Des. 30, 653–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Farouki, R.T., Jüttler, B., Manni, C.: Preface: Pythagorean-hodograph curves and related topics. Comput. Aided Geom. Des. 25, 203–204 (2008)

    Article  MATH  Google Scholar 

  73. Farouki, R.T., Kuspa, B.K., Manni, C., Sestini, A.: Efficient solution of the complex quadratic tridiagonal system for \(C^2\) PH quintic splines. Numer. Algorithms 27, 35–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  74. Farouki, R.T., Manjunathaiah, J., Nicholas, D., Yuan, G.-F., Jee, S.: Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves. Comput. Aided Des. 30, 631–640 (1998)

    Article  MATH  Google Scholar 

  75. Farouki, R.T., Manni, C., Pelosi, F., Sampoli, M.L.: Design of \(C^2\) Spatial Pythagorean-hodograph quintic spline curves by control polygons. Lecture Notes in Computer Science, vol. 6920, pp. 253–269 (2011)

    Google Scholar 

  76. Farouki, R.T., Manni, C., Sampoli, M.L., Sestini, A.: Shape-preserving interpolation of spatial data by Pythagorean-hodograph quintic spline curves. IMA J. Numer. Anal. 35, 478–498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. Farouki, R.T., Manni, C., Sestini, A.: Spatial \(C^2\) PH quintic splines. In: Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 2002, pp. 147–156. Nashboro Press, Brentwood (2003)

    Google Scholar 

  78. Farouki, R.T., Manni, C., Sestini, A.: Shape-preserving interpolation by \(G^1\) and \(G^2\) PH quintic splines. IMA J. Numer. Anal. 23, 175–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  79. Farouki, R.T., Moon, H.P.: Rational frames of minimal twist along space curves under specified boundary conditions. Adv. Comput. Math. (In press)

    Google Scholar 

  80. Farouki, R.T., Neff, C.A.: Hermite interpolation by Pythagorean-hodograph quintics. Math. Comput. 64, 1589–1609 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  81. Farouki, R.T., Nittler, K.M.: Rational swept surface constructions based on differential and integral sweep curve properties. Comput. Aided Geom. Des. 33, 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  82. Farouki, R.T., Nittler, K.M.: Efficient high–speed cornering motions based on continuously–variable feedrates I. Real-time interpolator algorithm. Int. J. Adv. Manuf. Tech. 87, 3557–3568 (2016)

    Article  Google Scholar 

  83. Farouki, R.T., Pelosi, F., Sampoli, M.L., Sestini, A.: Tensor-product surface patches with Pythagorean-hodograph isoparametric curves. IMA J. Numer. Anal. 36, 1389–1409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. Farouki, R.T., Peters, J.: Smooth curve design with double-Tschirnhausen cubics. Ann. Numer. Math. 3, 63–82 (1996)

    MathSciNet  MATH  Google Scholar 

  85. Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34, 736–752 (1990)

    Article  MathSciNet  Google Scholar 

  86. Farouki, R.T., Rampersad, J.: Cycles upon cycles: an anecdotal history of higher curves in science and engineering. In: Daehlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 95–116. Vanderbilt University Press, Nashville (1998)

    MATH  Google Scholar 

  87. Farouki, R.T., Sakkalis, T.: Pythagorean-hodograph space curves. Adv. Comput. Math. 2, 41–66 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  88. Farouki, R.T., Sakkalis, T.: Rational rotation-minimizing frames on polynomial space curves of arbitrary degree. J. Symb. Comput. 45, 844–856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  89. Farouki, R.T., Sakkalis, T.: A complete classification of quintic space curves with rational rotation-minimizing frames. J. Symb. Comput. 47, 214–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  90. Farouki, R.T., Shah, S.: Real-time CNC interpolators for Pythagorean-hodograph curves. Comput. Aided Geom. Des. 13, 583–600 (1996)

    Article  MATH  Google Scholar 

  91. Farouki, R.T., Sir, Z.: Rational Pythagorean-hodograph space curves. Comput. Aided Geom. Des. 28, 75–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  92. Farouki, R.T., Srinathu, J.: A real-time CNC interpolator algorithm for trimming and filling planar offset curves. Comput. Aided Des. 86, 1–11 (2017)

    Article  Google Scholar 

  93. Fernandes, D.de.A., Soensen, A.J., Donha, D.C.: Path generation for high–performance motion of ROVs based on a reference model. Model. Identif. Control 36, 81–101 (2013)

    Article  Google Scholar 

  94. Fiorot, J.C., Gensane, T.: Characterizations of the set of rational parametric curves with rational offsets. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces in Geometric Design, pp. 153–160. AK Peters, Wellesley (1994)

    MATH  Google Scholar 

  95. Goodman, T.N.T., Meek, D.S., Walton, D.J.: An involute spiral that matches \(G^2\) Hermite data in the plane. Comput. Aided Geom. Des. 26, 733–756 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  96. Giannelli, C., Mugnaini, D., Sestini, A.: Path planning with obstacle avoidance by \(G^1\) PH quintic splines. Comput. Aided Des. 75–76, 47–60 (2016)

    Article  Google Scholar 

  97. Giannelli, C., Mugnaini, D., Sestini, A.: \(C^2\) continuous time-dependent feedrate scheduling with configurable kinematic constraints. Comput. Aided Geom. Des. 63, 78–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  98. Gonzalez, C., Albrecht, G., Paluszny, M., Lentini, M.: Design of \(C^2\) algebraic-trigonometric Pythagorean hodograph splines with shape parameters. Comput. Appl. Math. 37, 1472–1495 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  99. Gravesen, J., Jüttler, B., Sir, Z.: On rationally supported surfaces. Comput. Aided Geom. Design 25, 320–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  100. Guo, J.: Design of the real-time motion controller for Pythagorean hodograph curves based on FPGA. Comput. Meas. Control 20, 1562–1568 (2012)

    Google Scholar 

  101. Habib, Z., Sakai, M.: Transition between concentric or tangent circles with a single segment of \(G^2\) PH quintic curve. Comput. Aided Geom. Des. 25, 247–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  102. Han, C.Y.: Nonexistence of rational rotation-minimizing frames on cubic curves. Comput. Aided Geom. Des. 25, 298–304 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  103. Han, C.Y.: Geometric Hermite interpolation by monotone helical quintics. Comput. Aided Geom. Des. 27, 713–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  104. Han, C.Y., Kwon, S.-H.: Cubic helical splines with Frenet-frame continuity. Comput. Aided Geom. Des. 28, 395–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  105. Hinds, J.K., Kuan, L.P.: Surfaces defined by curve transformations. In: Proceedings of the 15th Numerical Control Society Annual Meeting & Technical Conference, pp. 325–340 (1978)

    Google Scholar 

  106. Huard, M., Farouki, R.T., Sprynski, N., Biard, L.: \(C^2\) interpolation of spatial data subject to arc-length constraints using Pythagorean-hodograph quintic splines. Graph. Models 76, 30–42 (2014)

    Article  Google Scholar 

  107. Imani, B.M., Ghandehariun, A.: Real-time PH-based interpolation algorithm for high speed CNC machining. Int. J. Adv. Manuf. Tech. 56, 619–629 (2011)

    Article  Google Scholar 

  108. Jahanpour, J., Imani, B.M.: Real-time PH curve CNC interpolators for high speed cornering. Int. J. Adv. Manuf. Tech. 39, 302–316 (2008)

    Article  Google Scholar 

  109. Jahanpour, J., Tsai, M.C., Cheng, M.Y.: High-speed contouring control with NURBS-based \(C^2\) PH spline curves. Int. J. Adv. Manuf. Tech. 49, 663–674 (2010)

    Article  Google Scholar 

  110. Jahanpour, J., Ghadirifar, A.: The improved NURBS-based \(C^2\) PH spline curve contour following task with PDFF controller. Int. J. Adv. Manuf. Tech. 70, 995–1007 (2014)

    Article  Google Scholar 

  111. Jaklic, G., Kozak, J., Krajnc, M., Vitrih, V., Zagar, E.: Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph curves. Comput. Aided Geom. Des. 25, 720–728 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  112. Jaklic, G., Kozak, J., Krajnc, M., Vitrih, V., Zagar, E.: On interpolation by planar cubic \(G^2\) Pythagorean-hodograph spline curves. Math. Comput. 79, 305–326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  113. Jaklic, G., Kozak, J., Krajnc, M., Vitrih, V., Zagar, E.: An approach to geometric interpolation by Pythagorean-hodograph curves. Adv. Comput. Math. 37, 123–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  114. Jaklic, G., Kozak, J., Krajnc, M., Vitrih, V., Zagar, E.: Interpolation by \(G^2\) quintic Pythagorean-hodograph curves. Numer. Math. Theor. Methods Appl. 7, 374–398 (2014)

    MathSciNet  MATH  Google Scholar 

  115. Jaklic, G., Sampoli, M.L., Sestini, A., Zagar, E.: \(C^1\) rational interpolation of spherical motions with rational rotation-minimizing directed frames. Comput. Aided Geom. Des. 30, 159–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  116. Jüttler, B.: Generating rational frames of space curves via Hermite interpolation with Pythagorean hodograph cubic splines. In: Choi, D.P., Choi, H.I., Kim, M.S., Martin, R.R. (eds.) Differential Topological Techniques in Geometric Modeling and Processing ’98, pp. 83–106. Bookplus Press, Seoul (1998)

    Google Scholar 

  117. Jüttler, B.: Triangular Bézier surface patches with a linear normal vector field. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII, pp. 431–446. Information Geometers, Winchester (1998)

    Google Scholar 

  118. Jüttler, B.: Hermite interpolation by Pythagorean-hodograph curves of degree seven. Math. Comput. 70, 1089–1111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  119. Jüttler, B., Mäurer, C.: Cubic Pythagorean hodograph spline curves and applications to sweep surface modelling. Comput. Aided Des. 31, 73–83 (1999)

    Article  MATH  Google Scholar 

  120. Jüttler, B., Sampoli, M.L.: Hermite interpolation by piecewise polynomial surfaces with rational offsets. Comput. Aided Geom. Des. 17, 361–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  121. Karimi, M., Jahanpour, J., Ilbeigi, S.: A novel scheme for flexible NURBS-based \(C^2\) PH spline curve contour following task using neural network. Int. J. Precis. Eng. Manuf. 15, 2659–2672 (2014)

    Article  Google Scholar 

  122. Kim, G.I., Lee, S.: Pythagorean-hodograph preserving mappings. J. Comput. Appl. Math. 216, 217–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  123. Kim, S.H., Moon, H.P.: Rectifying control polygon for planar Pythagorean hodograph curves. Comput. Aided Geom. Des. 54, 1–14 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  124. Klok, F.: Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 3, 217–229 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  125. Klar, G., Valasek, G.: Employing Pythagorean hodograph curves for artistic patterns. Acta Cybern. 20, 101–110 (2011)

    Article  MATH  Google Scholar 

  126. Kong, J.H., Jeong, S.P., Lee, S., Kim, G.I.: \(C^1\) Hermite interpolation with simple planar PH curves by speed reparametrization. Comput. Aided Geom. Des. 25, 214–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  127. Kong, J.H., Lee, S., Kim, G.: Minkowski Pythagorean-hodograph preserving mappings. J. Comput. Appl. Math. 308, 166–176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  128. Kosinka, J., Jüttler, B.: \(G^1\) Hermite interpolation by Minkowski Pythagorean hodograph cubics. Comput. Aided Geom. Des. 23, 401–418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  129. Kosinka, J., Jüttler, B.: \(C^1\) Hermite interpolation by Pythagorean hodograph quintics in Minkowski space. Adv. Comput. Math. 30, 123–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  130. Kosinka, J., Lavicka, M.: On rational Minkowski Pythagorean hodograph curves. Comput. Aided Geom. Des. 27, 514–524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  131. Kosinka, J., Lavicka, M.: A unified Pythagorean hodograph approach to the medial axis transform and offset approximation. J. Comput. Appl. Math. 235, 3413–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  132. Kosinka, J., Lavicka, M.: Pythagorean hodograph curves: a survey of recent advances. J. Geom. Graph. 18, 23–34 (2014)

    MathSciNet  MATH  Google Scholar 

  133. Kosinka, J., Sir, Z.: \(C^2\) Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximations. Comput. Aided Geom. Des. 27, 631–643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  134. Kozak, J., Krajnc, M., Vitrih, V.: Dual representation of spatial rational Pythagorean-hodograph curves. Comput. Aided Geom. Des. 31, 43–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  135. Kozak, J., Krajnc, M., Rogina, M., Vitrih, V.: Pythagorean-hodograph cycloidal curves. J. Numer. Math. 23, 345–360 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  136. Kozak, J., Krajnc, M., Vitrih, V.: Parametric curves with Pythagorean binormal. Adv. Comput. Math. 41, 813–832 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  137. Kozak, J., Krajnc, M., Vitrih, V.: A quaternion approach to polynomial PN surfaces. Comput. Aided Geom. Des. 47, 172–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  138. Kozak, J., Krajnc, M., Vitrih, V.: \(G^1\) interpolation by rational cubic PH curves in \(\mathbb{R}^3\). Comput. Aided Geom. Des. 42, 7–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  139. Krajnc, M.: Interpolation with spatial rational Pythagorean-hodograph curves of class 4. Comput. Aided Geom. Des. 56, 16–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  140. Krajnc, M., Pockaj, K., Vitrih, V.: Construction of low degree rational motions. J. Comput. Appl. Math. 256, 92–103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  141. Krajnc, M., Sampoli, M.L., Sestini, A., Zagar, E.: \(C^1\) interpolation by rational biarcs with rational rotation minimizing directed frames. Comput. Aided Geom. Design 31, 427–440 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  142. Krajnc, M., Vitrih, V.: Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves. Math. Comput. Simul. 82, 1696–1711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  143. Krasauskas, R.: Unifying theory of Pythagorean-normal surfaces based on geometric algebra. Adv. Appl. Clifford Algebr. 27, 491–502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  144. Kreyszig, E.: Differential Geometry. University of Toronto Press (1959)

    Google Scholar 

  145. Kwon, S.H.: Solvability of \(G^1\) Hermite interpolation by spatial Pythagorean-hodograph cubics and its selection scheme. Comput. Aided Geom. Des. 27, 138–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  146. Lavicka, M., Bastl, B.: Rational hypersurfaces with rational convolutions. Comput. Aided Geom. Des. 24, 410–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  147. Lavicka, M., Bastl, B.: PN surfaces and their convolutions with rational surfaces. Comput. Aided Geom. Des. 25, 763–774 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  148. Lavicka, M., Sir, Z., Vrsek, J.: Smooth surface interpolation using patches with rational offsets. Comput. Aided Geom. Des. 48, 75–85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  149. Lee, H.C., Jung, E.K., Kim, G.: Planar \(C^1\) Hermite interpolation with PH cuts of degree \((1,3)\) of Laurent series. Comput. Aided Geom. Des. 31, 689–700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  150. Lee, S., Lee, H.C., Lee, M.R., Jeong, S., Kim, G.: Hermite interpolation using Möbius transformations of planar Pythagorean–hodograph cubics. Abstr. Appl. Anal. Article No. 560246 (2012)

    Google Scholar 

  151. Li, Z., Ait-Haddou, R., Biard, L.: Pythagorean hodograph spline spirals that match \(G^3\) Hermite data from circles. J. Comput. Appl. Math. 278, 162–180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  152. Lü, W.: Offset-rational parametric plane curves. Comput. Aided Geom. Des. 12, 601–616 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  153. Lu, X.J., Zheng, J.M., Cai, Y.Y., Zhao, G.: Geometric characteristics of a class of cubic curves with rational offsets. Comput. Aided Des. 70, 36–45 (2016)

    Article  MathSciNet  Google Scholar 

  154. Macharet, D.G., Neto, A.A., Campos, M.F.M.: On the generation of feasible paths for aerial robots in environments with obstacles. In: Proceedings, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Saint Louis, MO, pp. 3380–3385 (2009)

    Google Scholar 

  155. Mäurer, C., Jüttler, B.: Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics. J. Geom. Graph. 3, 141–159 (1999)

    MathSciNet  MATH  Google Scholar 

  156. Monterde, J.: A characterization of helical polynomial curves of any degree. Adv. Comput. Math. 30, 61–78 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  157. Monterde, J.: Salkowski curves revisited: a family of curves with constant curvature and non-constant torsion. Comput. Aided Geom. Des. 26, 271–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  158. Monterde, J., Ongay, F.: An isoperimetric type problem for primitive Pythagorean hodograph curves. Comput. Aided Geom. Des. 29, 626–647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  159. Moon, H.P.: Computing rational offsets via medial axis transform using polynomial speed curves in \({\mathbb{R}}^{2,1}\). In: Geometric Modeling and Processing ’98, pp. 187–203. Bookplus Press (1998)

    Google Scholar 

  160. Moon, H.P.: Medial axis transform and Minkowski geometry. Ph.D. Dissertation, Seoul National University (1998)

    Google Scholar 

  161. Moon, H.P.: Minkowski Pythagorean hodographs. Comput. Aided Geom. Des. 16, 739–753 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  162. Moon, H.P., Farouki, R.T.: \(C^1\) and \(C^2\) interpolation of orientation data along spatial Pythagorean-hodograph curves using rational adapted spline frames. Comput. Aided Geom. Des. 66, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  163. Neto, A.A., Macharet, D.G., Campos, M.F.M.: Feasible RRT–based path planning using seventh order Bézier curves. In: Proceedings, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 1445–1450 (2010)

    Google Scholar 

  164. Neto, A.A., Macharet, D.G., Campos, M.F.M.: On the generation of trajectories for multiple UAVs in environments with obstacles. J. Intell. Robot. Syst. 57, 123–141 (2010)

    Article  MATH  Google Scholar 

  165. Neto, A.A., Macharet, D.G., Campos, M.F.M.: Feasible path planning for fixed-wing UAVs using seventh order Bézier curves. J. Braz. Comput. Soc. 19, 193–203 (2013)

    Article  MathSciNet  Google Scholar 

  166. Nittler, K.M., Farouki, R.T.: A real-time surface interpolator methodology for precision CNC machining of swept surfaces. Int. J. Adv. Manuf. Tech. 83, 561–574 (2016)

    Article  Google Scholar 

  167. Nittler, K.M., Farouki, R.T.: Efficient high–speed cornering motions based on continuously–variable feedrates. II. Implementation and performance analysis. Int. J. Adv. Manuf. Tech. 88, 159–174 (2017)

    Article  Google Scholar 

  168. Pelosi, F., Farouki, R.T., Manni, C., Sestini, A.: Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics. Adv. Comput. Math. 22, 325–352 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  169. Pelosi, F., Sampoli, M.L., Farouki, R.T., Manni, C.: A control polygon scheme for design of planar \(C^2\) PH quintic spline curves. Comput. Aided Geom. Des. 24, 28–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  170. Perwass, C.B.U., Farouki, R.T., Noakes, L.: A geometric product formulation for spatial Pythagorean-hodograph curves with applications to Hermite interpolation. Comput. Aided Geom. Des. 24, 220–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  171. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  172. Peternell, M.: Rational two-parameter families of spheres and rational offset surfaces. J. Symb. Comput. 45, 1–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  173. Peternell, M., Odehnal, B.: Convolution surfaces of quadratic triangular Bézier surfaces. Comput. Aided Geom. Des. 25, 116–129 (2008)

    Article  MATH  Google Scholar 

  174. Peternell, M., Odehnal, B., Sampoli, M.L.: On quadratic two-parameter families of spheres and their envelopes. Comput. Aided Geom. Des. 25, 342–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  175. Peternell, M., Pottmann, H.: A Laguerre geometric approach to rational offsets. Comput. Aided Geom. Des. 15, 223–249 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  176. Piegl, L.: The sphere as a rational Bézier surface. Comput. Aided Geom. Des. 3, 45–52 (1986)

    Article  MATH  Google Scholar 

  177. Pockaj, K.: Hermite \(G^1\) rational spline motions of degree six. Numer. Algorithms 66, 721–739 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  178. Pottmann, H.: Applications of the dual Bézier representation of rational curves and surfaces. In: Laurent, P.-J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces in Geometric Design, AK Peters, Wellesley, MA, pp. 153–160 (1994)

    Google Scholar 

  179. Pottmann, H.: Rational curves and surfaces with rational offsets. Comput. Aided Geom. Des. 12, 175–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  180. Pottmann, H.: Curve design with rational Pythagorean-hodograph curves. Adv. Comput. Math. 3, 147–170 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  181. Romani, L., Montagner, F.: Algebraic–trigonometric Pythagorean–hodograph space curves. Adv. Comput. Math. (In press)

    Google Scholar 

  182. Romani, L., Saini, L., Albrecht, G.: Algebraic-trigonometric Pythagorean-hodograph curves and their use for Hermite interpolation. Adv. Comput. Math. 40, 977–1010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  183. Sakkalis, T., Farouki, R.T.: Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3. J. Comput. Appl. Math. 236, 4375–4382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  184. Sampoli, M.L., Peternell, M., Jüttler, B.: Rational surfaces with linear normals and their convolutions with rational surfaces. Comput. Aided Geom. Des. 23, 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  185. Sampoli, M.L., Sestini, A., Jaklic, G., Zagar, E.: A theoretical analysis of an improved rational spline scheme for spherical camera motions. Lecture Notes in Computer Science, vol. 8177, pp. 442–455 (2014)

    Google Scholar 

  186. Schraeder, T.F., Farouki, R.T.: Experimental performance analysis of an inverse dynamics CNC compensation scheme for high-speed execution of curved toolpaths. Int. J. Adv. Manuf. Tech. 73, 195–208 (2014)

    Article  Google Scholar 

  187. Sestini, A., Ferjancic, K., Manni, C., Sampoli, M.L.: A fully data-dependent criterion for free angles selection in spatial PH cubic biarc Hermite interpolation. Comput. Aided Geom. Des. 31, 398–411 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  188. Sestini, A., Landolfi, L., Manni, C.: On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme. Comput. Aided Geom. Des. 30, 148–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  189. Shanmugavel, M., Tsourdos, A., White, B.A., Zbikowski, R.: Differential geometric path plannings of multiple UAVs. ASME J. Dyn. Syst. Meas. Control 129, 620–632 (2007)

    Article  Google Scholar 

  190. Shanmugavel, M., Tsourdos, A., Zbikowski, R., White, B.A., Rabbath, C.A., Léchevin, N.: A solution to simultaneous arrival of multiple UAVs using Pythagorean hodograph curves. In: Proceedings, 2006 American Control Conference, pp. 2813–2818 (2006)

    Google Scholar 

  191. Shi, J., Bi, Q.Z., Zhu, L.M., Wang, Y.H.: Corner rounding of linear five-axis tool path by dual PH curves blending. Int. J. Mach. Tools Manuf. 88, 223–236 (2015)

    Article  Google Scholar 

  192. Singh, I., Amara, Y., Melingui, A., Pathak, P.M., Merzouki, R.: Modeling of continuum manipulators using Pythagorean hodograph curves. Soft Robotics (In press)

    Google Scholar 

  193. Sir, Z., Bastl, B., Lavicka, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Comput. Aided Geom. Des. 27, 405–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  194. Sir, Z., Feichtinger, R., Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Comput. Aided Des. 38, 608–618 (2006)

    Article  Google Scholar 

  195. Sir, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theor. Comput. Sci. 392, 141–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  196. Sir, Z., Jüttler, B.: Spatial Pythagorean hodograph quintics and the approximation of pipe surfaces. In: Martin, R., Bez, H., Sabin, M. (eds.) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol. 3604, pp. 364–380 (2005)

    Chapter  MATH  Google Scholar 

  197. Sir, Z., Jüttler, B.: \(C^2\) Hermite interpolation by spatial Pythagorean hodograph curves. Math. Comput. 76, 1373–1391 (2007)

    Article  MATH  Google Scholar 

  198. Sir, Z., Wings, E., Jüttler, B.: Rounding spatial G-code tool paths using Pythagorean hodograph curves. ASME J. Comput. Info. Sci. Eng. 7, 186–191 (2007)

    Article  Google Scholar 

  199. Struik, D.J.: Lectures on Classical Differential Geometry. Dover Publications (reprint), New York (1961)

    MATH  Google Scholar 

  200. Su, T.T., Cheng, L., Wang, Y.K., Liang, X., Zheng, J., Zhang, H.J.: Time-optimal trajectory planning for Delta robot based on quintic Pythagorean-hodograph curves. IEEE Access 6, 28530–28539 (2018)

    Article  Google Scholar 

  201. Subchan, S., White, B.A., Tsourdos, A., Shanmugavel, M., Zbikowski, R.: Pythagorean hodograph (PH) planning for tracking airborne contaminant using sensor swarm. In: Proceedings, IEEE International Instrumentation and Measurement Control Technology Conference (2008)

    Google Scholar 

  202. Tsai, Y.-F., Farouki, R.T., Feldman, B.: Performance analysis of CNC interpolators for time-dependent feedrates along PH curves. Comput. Aided Geom. Des. 18, 245–265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  203. Ueda, K.: Spherical Pythagorean-hodograph curves. In: Daehlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 485–492. Vanderbilt University Press, Nashville (1998)

    MATH  Google Scholar 

  204. Wagner, M.G., Ravani, B.: Curves with rational Frenet-Serret motion. Comput. Aided Geom. Des. 15, 79–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  205. Walton, D.J., Meek, D.S.: \(G^2\) blends of linear segments with cubics and Pythagorean-hodograph quintics. Int. J. Comput. Math. 86, 1498–1511 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  206. Walton, D.J., Meek, D.S.: Curve design with more general planar Pythagorean-hodograph quintic spiral segments. Comput. Aided Geom. Des. 30, 707–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  207. Wang, G., Fang, L.: On control polygons of quartic Pythagorean-hodograph curves. Comput. Aided Geom. Des. 26, 1006–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  208. Wang, Q., Chen, Y., Li, W., Wei, H.: Corner smoothing using PH curve for CNC system. Acta Aero. Astro. Sinica 31, 1481–1487 (2010)

    Google Scholar 

  209. Wang, W., Joe, B.: Robust computation of the rotation minimizing frame for sweep surface modelling. Comput. Aided Des. 29, 379–391 (1997)

    Article  Google Scholar 

  210. Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. 27, Article 2 (2008)

    Google Scholar 

  211. Zeng, W.H., Yi, J., Rao, X., Zheng, Y.: A two-stage path planning approach for multiple car-like robots based on PH curves and a modified harmony search algorithm. Eng. Optim. 49, 1995–2012 (2017)

    Article  MathSciNet  Google Scholar 

  212. Zhang, Y., Yang, X.X., Zhou, W.W., Zhao, H.W.: Study of three-dimensional on-line path planning for UAV based on Pythagorean-hodograph curve. Int. J. Smart Sens. Intell. Syst. 8, 1641–1666 (2015)

    Google Scholar 

  213. Zheng, Z., Wang, G., Yang, P.: On control polygons of Pythagorean-hodograph septic curves. J. Comput. Appl. Math. 296, 212–227 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. Giannelli and A. Sestini are members of the INdAM Research group GNCS. The INdAM support through GNCS and Finanziamenti Premiali SUNRISE is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rida T. Farouki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farouki, R.T., Giannelli, C., Sestini, A. (2019). New Developments in Theory, Algorithms, and Applications for Pythagorean–Hodograph Curves. In: Giannelli, C., Speleers, H. (eds) Advanced Methods for Geometric Modeling and Numerical Simulation. Springer INdAM Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-27331-6_7

Download citation

Publish with us

Policies and ethics