Skip to main content

Impacts Caused by Manganese in the Aquatic Environments of Brazil

  • Chapter
  • First Online:
Pollution of Water Bodies in Latin America

Abstract

Aquatic contamination derived from erroneous anthropogenic practices favors the presence of metals and other contaminants in the water. Metals, especially, cause concern because of their persistence, potential for bioaccumulation in aquatic organisms, and deposition in the soil. Considering that the current potable water systems of developing countries do not completely remove these substances, it becomes an environmental and public health problem, since populations often ingest water contaminated by such substances. As manganese is one of the main and most frequent metal pollutants, some studies already seek to elucidate the damage that this substance presents to aquatic organisms. In this sense, the present study sought to compile and revise data about the occurrence and the impacts caused by this element in the aquatic environments of Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcon SP, Gorojod RM, Kotler ML (2018) Regulated necrosis orchestrates microglial cell death in manganese-induced toxicity. Neuroscience 393:206–225

    Google Scholar 

  • Alonso SG, Esteban-Hernández J, Rivera YV, Hernández-Barrera V, Miguel AG (2010) Contaminación del agua en Fuentes cercanas a campos petrolíferos de Bolivia. Rev Panam Salud Publica 28:235–243

    Google Scholar 

  • Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MRM, Bonan CD (2017) Manganese (II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. Aquat Toxicol 182:172–183

    CAS  PubMed  Google Scholar 

  • Alvarez-Bastida C, Martínez-Miranda V, Solache-Ríos M, Linares-Hernández I, Teutli-Siqueira A, Vázquez-Mejía G (2018) Drinking water characterization and removal of manganese. Removal of manganese from water. J Environ Chem Eng 6:2119–2125

    CAS  Google Scholar 

  • Alves RIS, Machado CS, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155

    CAS  PubMed  Google Scholar 

  • Ayandiran TA, Fawole OO, Dahunsi SO (2018) Water quality assessment of bitumen polluted Oluwa River, South-Western Nigeria. Water Resources Ind 19:13–19

    Google Scholar 

  • Bacquart T, Frisbie SH, Mitchell E, Mitchell E, Grigg L, Cole C, Small C, Sarkar B (2015) Multiple inorganic toxic substances contaminating the groundwater of Myingyan township, Myanmar: arsenic, manganese, fluoride, iron, and uranium. Sci Total Environ 517:232–245

    CAS  PubMed  Google Scholar 

  • Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, Olajire AA (2018) New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: a case study of the Gulf of Guinea. Reg Stud Mar Sci 18:44–56

    Google Scholar 

  • Bhowmik AK, Alamdar A, Katsoyiannis I, Shen H, Ali N, Ali SM, Bokhari H, Schäfer RB, Musstjab ASQ (2015) Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan. Sci Total Environ 538:306–3016

    CAS  PubMed  Google Scholar 

  • Bouchard MF, Surette C, Cormier P, Foucher D (2018) Low level exposure to manganese from drinking water and cognition in school-age children. Neurotoxicology 64:110–117

    CAS  PubMed  Google Scholar 

  • BRASIL. Conselho Nacional do Meio Ambiente – CONAMA, 2005. Resolução CONAMA no 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de efluentes, e dá outras providencias. Diário Oficial da República Federativa do Brasil, Brasilia, 18 mar. pp 58–63. Disponível em: <http://www.mma.gov.br/port/conama/res/res05/res35705.pdf> Acesso em: 05/05/2018

  • BRASIL. Ministério da Saúde – PORTARIA N° 2.914, DE 12 DE DEZEMBRO DE 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Disponível em: <http://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html> Acesso em 10/08/2018

  • Brito IA, Garcia JRE, Salaroli AB, Figueira RCL, Martins CC, Neto AC, Gusso- Choueri PK, Choureri RB, Araujo SBL, Ribeiro CAO (2018) Embryo toxicity assay in the fish species Rhamdia quelen (Teleostei, Heptaridae) to assess water quality in the upper Iguaçu basin (Parana, Brazil). Chemosphere 208:207–218

    Google Scholar 

  • Carvalho CF, Oulhote Y, Martorelli M, Carvalho CO, Menezes Filho JA, Argollo N, Abreu N (2018) Environmental manganese exposure and associations with memory, executive functions, and hyperactivity in Brazilian children. Neurotoxicology 69:253–259

    PubMed  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153

    Google Scholar 

  • Coppo GC, Passos LS, Lopes TOM, Pereira TM, Merçon J, Cabral DS, Barbosa BV, Caetano LS, Kampke EH, Chippari-Gomes AA (2018) Genotoxic, biochemical and bioconcentration effects of manganese on Oreochromis niloticus (Cichlidae). Ecotoxicology 27(8):1150–1160

    CAS  PubMed  Google Scholar 

  • Couper J (1837) On the effects of black oxide manganese when inhaled into the lungs. Brit Ann Med Pharm Vital Stat Gen Sci 1:41–42

    Google Scholar 

  • Farrag AEHA, Moghny TA, Mohamed AMG, Saleem SS, Fathy M (2016) Abu zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt. Appl Water Sci 6:3087–3094

    Google Scholar 

  • Foster ML, Rao DB, Francher T, Traver S, Dorman DC (2018) Olfactory toxicity in rats following manganese chloride nasal instillation: a pilot study. Neurotoxicology 64:284–290

    CAS  PubMed  Google Scholar 

  • Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B (2012) World Health Organization discontinues its drinking-water guideline for manganese. Environ Health Perspect 20:775–778

    Google Scholar 

  • Gabriel D, Riffel APK, Finamor IA, Saccol EMH, Ourique GM, Goulart LO, Kochhann D, Cunha MA, Garcia LO, Pavanato MA, Val AL, Baldisserotto B, Llesuy SF (2013) Effects of subchronic manganese chloride exposure on Tambaqui (Colossoma macropomum) tissues: oxidative stress and antioxidant defenses. Arch Environ Contam Toxicol 64:659–667

    CAS  PubMed  Google Scholar 

  • González-Merizalde MV, Menezes-Filho JA, Cruz-Erazo CT, Bermeo-Flores SA, Saánchez-Castillo MO, Hernández-Bonilla D, Moran A (2016) Manganese and mercury levels in water, sediments, and children living near gold-mining areas of the Nangaritza River Basin, Ecuadorian Amazon. Arch Environ Contam Toxicol 71:171–182

    PubMed  Google Scholar 

  • Gunter TE (2017) Manganese and mitochondrial function, Molecular, genetic, and nutritional aspects of major and trace minerals. Collins, J.F. Elsevier, London, 514p

    Google Scholar 

  • Guo Z, Zhang Z, Wang Q, Zhang J, Wang L, Zhang Q, Li H, Wu S (2018) Manganese chloride induces histone acetylation changes in neuronal cells: its role in manganese-induced damage. Neurotoxicology 65:255–263

    CAS  PubMed  Google Scholar 

  • Hatje V, Pedreira RMA, Rezende CE, Schettini CAF, Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:1–13

    CAS  Google Scholar 

  • Hermes N, Schneider RCS, Molin DD, Riegel GZ, Costa AB, Corbellini VA, Torres JPM, Malm O (2013) Environmental pathways and human exposure to manganese in southern Brazil. An Acad Bras Cienc 85(4):1275–1288

    CAS  PubMed  Google Scholar 

  • HSDB (2001) Manganese compounds. National Library of Medicine, Hazardous Substances Data Bank, Bethesda. Available at http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

  • Huang P, Chen C, Wang H, Li G, Jing H, Han Y, Liu N, Xiao Y, Yu Q, Liu Y, Wang P, Shi Z, Sun Z (2011) Manganese effects in the liver following subacute or subchronic manganese chloride exposure in rats. Ecotoxicol Environ Saf 74:615–622

    CAS  PubMed  Google Scholar 

  • Islam MS, Ahmed MK, Habibullah-Al-Mamum M, Hoque MF (2015) Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci 73(4):1837–1848

    CAS  Google Scholar 

  • Kakoi B, Kaluli JW, Ndiba P, Thiong’o G (2016) Banana pith as a natural coagulant for polluted river water. Ecol Eng 95:699–705

    Google Scholar 

  • Kassim A, Rezayi M, Ahmadzadeh S, Rounaghi G, Mohajeri M, Yusof NA, Tee TW, Heng LY, Abdullah AH (2011) A novel ion– selective polymeric membrane sensor for determining thallium (I) with high selectivity. IOP Conf Series Mater Sci Eng 17(1):1–7

    Google Scholar 

  • Khalid M, Aoun RA, Mathews TA (2011) Altered striatal dopamine release following a sub-acute exposure to manganese. J Neurosci Methods 15(202):182–191

    Google Scholar 

  • Khan MYA, Gani KM, Chakrapani GJ (2017) Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—a tributary of river Ganges, India. Environ Earth Sci 76:231–244

    Google Scholar 

  • Lebda MA, El-Neweshy MS, El-Sayed YS (2012) Neurohepatic toxicity of subacute manganese chloride exposure and potential chemoprotective effects of lycopene. Neurotoxicology 33(1):98–104

    CAS  PubMed  Google Scholar 

  • Lei K, Giubilato E, Critto A, Pan H, Lin C (2016) Contamination and human health risk of lead in soils around lead/zinc smelting areas in China. Environ Sci Pollut Res 23:13128–13136

    CAS  Google Scholar 

  • Li Z, Guo Q, Li Z, Fan G, Xiong DB, Su Y, Zhang J, Zhang D (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/ aluminum composites with a bioinspired nanolaminated structure. Nano Lett 15:8077–8083

    CAS  PubMed  Google Scholar 

  • Liu X, Zhang L, Guan H, Zhang Z, Xu S (2013a) Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. Food Chem Toxicol 60:168–176

    CAS  PubMed  Google Scholar 

  • Liu X, Li Z, Tie F, Liu N, Zhang Z, Xu S (2013b) Effects of manganese-toxicity on immune-related organs of cocks. Chemosphere 90(7):2085–2100

    CAS  PubMed  Google Scholar 

  • Liu X, Yang J, Lu C, Jiang S, Nie X, Han J, Yin L, Jiang J (2017) Downregulation of Mfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells. Neurochem Int 108:40–51

    CAS  PubMed  Google Scholar 

  • Lu X, Zhu Y, Bai R, Li S, Teng X (2015) The effect of manganese-induced toxicity on the cytokine mRNA expression of chicken spleen lymphocytes in vitro. Res Vet Sci 101:165–167

    CAS  PubMed  Google Scholar 

  • Lynam DR, Roos JW, Pfeifer GD, Fort BF, Pullin TG (1999) Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology 20:145–150

    CAS  PubMed  Google Scholar 

  • Machado CS, Fregonesi BM, Alves RIS, Tonani KAA, Sierra J, Martinis BS, Celere BS, Mari M, Schuhmacher M, Nadal M, Domingo JL, Segura-Muñoz S (2017) Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil. Environ Sci Pollut Res 24(25):20160–20172

    CAS  Google Scholar 

  • Marsidi N, Hasan HA, Abdulah SRS (2018) A review of biological aerated filters for iron and manganese ions removal in water treatment. J Water Process Eng 23:1–12

    Google Scholar 

  • Martin JAR, Arana CD, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163

    Google Scholar 

  • McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA (2008) Postnatal manganese exposure alters dopamine transporter function in adult rats: potential impact on nonassociative and associative processes. Neuroscience 154(2):848–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mena I (1980) Manganese. In: Waldron HA (ed) Metals in the environment, 1st edn. Academic Press, London, pp 199–220

    Google Scholar 

  • Mena I, Marin O, Fuenzalida S, Cotzias GC (1967) Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 17:128–136

    CAS  PubMed  Google Scholar 

  • Nascimento CA, Staggemeier R, Bianchi E, Rodrigues MT, Fabres R, Soliman MC, Bortoluzzi M, Luz RB, Heinzelmann LS, Santos EL, Fleck JD, Spilki FR (2015) Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin. Braz J Biol 75(2):50–56

    CAS  PubMed  Google Scholar 

  • O’neal SL, Lee JW, Zheng W, Canhão JR (2014) Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. Neurotoxicology 44:303–313

    PubMed  PubMed Central  Google Scholar 

  • Okada MA, Neto FF, Nosso CH, Voigt CL, Campos SX, Ribeiro CAO (2016) Brain effects of manganese exposure in mice pups during prenatal and breastfeeding periods. Neurochem Int 97:109–116

    CAS  PubMed  Google Scholar 

  • Oulhote Y, Mergler D, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Suavé S, Bouchard MF (2014) Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122(12):1343–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil DS, Chavan SM, Oubagaranadin JUK (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4:468–487

    CAS  Google Scholar 

  • Quadra GR, Roland R, Barros N, Malm O, Lino AS, Azevedo GM, Thomaz JR, Andrade-Vieira LF, Praça-Fontes MM, Almeida RM, Mendonça RF, Cardoso SJ, Guida YS, Campos JMS (2019) Far-reaching cytogenotoxic effects of mine waste from the Fundão dam disaster in Brazil. Chemosphere 215:753–757

    CAS  PubMed  Google Scholar 

  • Rietzler AC, Fonseca AL, Lopes GP (2001) Heavy metals in tributaries of Pampulha reservoir, Minas Gerais. Braz J Biol 61(3):363–370

    CAS  PubMed  Google Scholar 

  • Rodrigues GZP, Souza MS, Silva AH, Zwetsch BG, Gehlen G (2017) Evaluation of intestinal histological damage in zebrafish exposed to environmentally relevant concentrations of manganese. Ciência e Natura 40(e52):1–8

    Google Scholar 

  • Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A (2018) Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 64:204–218

    CAS  PubMed  Google Scholar 

  • Silva APG, Santiago MSA, Maranho LA, Oliveira RP, Constantino DHJ, Pereira CDS, Silva CS, Perobelli JE (2018) Could male reproductive system be the main target of subchronic exposure to manganese in adult animals? Toxicology 409:1–12

    PubMed  Google Scholar 

  • Simpson SL, Spadaro DA (2016) Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: implications for deep sea exploration, mining and tailings disposal. Environ Sci Technol 50(7):4061–4070

    CAS  PubMed  Google Scholar 

  • Smith D, Woodall GM, Jarabek AM, Boyes WK (2018) Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology 64:177–184

    CAS  PubMed  Google Scholar 

  • Vieira MC, Torranteras R, Córdoba F, Canalejo A (2012) Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotoxicol Environ Saf 78(1):212–217

    CAS  PubMed  Google Scholar 

  • Wang Z, Ren J, Zhang G, Liu S, Zhang X, Liu Z, Zhang J (2015) Behavior of dissolved aluminum in the Huanghe (Yellow River) and its estuary: impact of human activities and sorption processes. Estuar Coast Shelf Sci 153:86–95

    CAS  Google Scholar 

  • Winkel L, Berg M, Amini M, Hug SJ, Johnson A (2008) Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat Geosci 1:536–542

    CAS  Google Scholar 

  • World Health Organization (1981) WHO, Manganese, IPCS, Geneva

    Google Scholar 

  • World Health Organization. WHO (2011) Guidelines for drinking-water quality, 4th edn, IPCS, Geneva

    Google Scholar 

  • Wu Q, Zhou H, Tham NFY, Tian Y, Tan Y, Zhou S, Li Q, Chen Y, Leung YS (2016) Contamination, toxicity and speciation of heavy metals in an industrialized urban river: implications for the dispersal of heavy metals. Marine Pollut Bull 104:153–161

    CAS  Google Scholar 

  • Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf 141:17–24

    CAS  PubMed  Google Scholar 

  • Yoon H et al (2011) Apoptosis induced by manganese on neuronal SK-N-MC cell line: endoplasmic reticulum (ER) stress and mitochondria dysfunction. Environ Health Toxicol 26:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, G.Z.P., de Souza, M.S., Gehlen, G. (2019). Impacts Caused by Manganese in the Aquatic Environments of Brazil. In: Gómez-Oliván, L. (eds) Pollution of Water Bodies in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-27296-8_19

Download citation

Publish with us

Policies and ethics