Skip to main content

Health Diagnosis of the Fish Scomberomorus cavalla from Tecolutla, Ver. México

  • Chapter
  • First Online:
Pollution of Water Bodies in Latin America

Abstract

Ecotoxicological studies have been using tissular biomarkers to assess the effects of environmental and pollution stressors. The aim of this study was to conduct a health diagnosis using tissular biomarkers in the liver and muscle of Scomberomorus cavalla. Ten organisms were collected to obtain their morphometric and biological parameters from which a status index was calculated. Fish tissues were analyzed with histological and immunohistochemical (metallothioneins and Hsp70 antibodies) techniques. The tissue samples (25 from the liver and 43 from muscles) were stained with H-E, selecting biological responses for the immunochemical biomarker analysis. The total average of weight and length was 83 cm and 3400 g, respectively; status index was 0.6, suggesting an allometric relationship and that development has not been affected. Only one organism showed parasites in the liver; this organ presented hepatocytes with its nucleus and blood vessels with nucleated erythrocytes; some of the lesions found were focal inflammation, infiltration, granulomas, and eosinophilic secretions. The muscle presented packages enclosed in connective tissue, peripheral ovoid nuclei, and striations. The connective tissue showed blood vessels with oval nucleated erythrocytes. The antigen-antibody reaction with metallothionein in the liver and muscle was negative; Hsp70 was focally positive in the hepatocyte cytoplasm and negative in the muscle. Liver biomarker showed evidence of reversible damage, while the muscle’s morphologic and biochemical integrity is not at risk. In conclusion, S. cavalla captured in Tecolutla, Ver., does not show important effects due to environmental or pollution stress and can be considered mostly healthy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams D, McMichael RH (1999) Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish Bull 97(2):372–379

    Google Scholar 

  • Adams SM, Shepard KL, Greeley MS et al (1989) The use of bioindicators for assessing the effects of pollutant stress on fish. Mar Environ Res 28(1):459–464

    CAS  Google Scholar 

  • Agboola JI, Anetekhai MA (2008) Length–weight relationships of some fresh and brackish water fishes in Badagry creek, Nigeria. J Appl Ichthyol 24(5):623–625

    Google Scholar 

  • Agius C, Roberts RJ (2003) Melano-macrophage centres and their role in fish pathology. J Fish Dis 26(9):499–509

    CAS  PubMed  Google Scholar 

  • Barnabé G, Martínez EC (1996) Bases biológicas y ecológicas de la acuicultura. Acribia, España, p 451

    Google Scholar 

  • Bernet D, Schmidt H, Meier W et al (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22(1):25–34

    Google Scholar 

  • Bierkens JGEA (2000) Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153(1):61–72

    CAS  PubMed  Google Scholar 

  • Bruland GW (1983) Trace elements in seawater. In: Riley JP, Chester R (eds) Chemical oceanography. Academic Press, New York, pp 159–221

    Google Scholar 

  • Cai Y (2005) Bioaccumulation of mercury in pelagic fishes in NW Gulf of Mexico. A&M University, Texas, p 64

    Google Scholar 

  • Campos H (1987) Los metales pesados: su contaminación y sus efectos tóxicos. Contaminación ambiental 9(17):63–70

    Google Scholar 

  • Caso M, Pisanty I, Ezcurra E (2004) Diagnóstico ambiental del Golfo de México, vol 1. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología. Instituto de Ecología A.C. Harte Reaserch Institute for Gulf of Mexico Studies 626, México

    Google Scholar 

  • Chaparro GJ, Aranzazu Taborda DA, Urrea L et al (2013) Immunolocalización hepática de CYP P450 en un experimento de toxicidad subaguda por Clorpirifos 0,0-dietil 0-(3, 5, 6-tricloro-2-piridil fosforotioato) en machos juveniles de tilapia Oreochromis spp. CES Medicina Veterinaria y Zootecnia 8:61–72

    Google Scholar 

  • Clark SL, Kaufman WI, et al (1997) Histopathology, metallothionein, stress and enzyme and inmunohistochemistry as biomarker for cadmium exposure in Asia clam. Potamocurbula amurensis. SETAC, USA

    Google Scholar 

  • Collette BB, Nauen CE (1983) An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. In: FAO (ed) Scombrids of the world. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Coronato S, Di Girolamo W, Salas M et al (1999) Biología de las proteínas del shock térmico. Medicina 59:477–486

    CAS  PubMed  Google Scholar 

  • Costopoulos CG, Fonds M (1989) Proximate body composition and energy content of plaice (Pleuronectes platessa) in relation to the condition factor. Neth J Sea Res 24(1):45–55

    Google Scholar 

  • Cruz-Rodríguez LA, Baucum AJ, Soudant P et al (2000) Effects of PCBs sorbed to algal paste and sediments on the stress protein response (HSP70 family) in the eastern oyster, Crassostrea virginica. Mar Environ Res 50(1):341–345

    PubMed  Google Scholar 

  • Dalmo RA, Ingebrigtsen K, Bøgwald J (1997) Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J Fish Dis 20(4):241–273

    CAS  Google Scholar 

  • Di Giulio RT, Hinton DE (2008) The toxicology of fishes. CRC Press, Boca Raton, p 1071

    Google Scholar 

  • Díaz-Sánchez A, Aguilar C III (2008) Simposium Nacional de Tiburones y Raya, SOMEPEC U, Alianza WWF-Telcel, editor. México, p 252

    Google Scholar 

  • Espina S, Vanegas C (2005) Ecotoxicología y Contaminación. In: Botello AV, Rendón von Osten J, Gold Bouchot G, Agraz Hernández C (eds) Golfo de México, contaminación e impacto ambiental: diagnóstico y tendencias (2nd ed., p. 79–120). Campeche, Mexico: Centro EPOMEX. Universidad Autónoma de Campeche

    Google Scholar 

  • Farris JL, Van Hassel JH (Eds) (2007) Freshwater bivalve ecotoxicology. Florida, USA: SETAC-CRC Press

    Google Scholar 

  • Feist SW, Longshaw M (2008) Histopathology of fish parasite infections – importance for populations. J Fish Biol 73(9):2143–2160

    Google Scholar 

  • Feldhausen PH, Johnson D (1983) Ordination of trace metals in Syacium papillosum (dusky flounder) from the eastern Gulf of Mexico. Northeast Gulf Sci 6:9–21

    Google Scholar 

  • Fitzgerald WF, Clarkson TW (1991) Mercury and monomethylmercury: present and future concerns. Environ Health Perspect 96:159–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP et al (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32(1):1–7

    CAS  Google Scholar 

  • Fossion R, Fossion J, Rivera AL et al (2018) Homeostasis from a time-series perspective: an intuitive interpretation of the variability of physiological variables. In: Olivares-Quiroz L, Resendis-Antonio O (eds) Quantitative models for microscopic to macroscopic biological macromolecules and tissues. Springer International Publishing, Cham, pp 87–109

    Google Scholar 

  • Galvão LAC, Corey G (1987) Arsenico. Serie Vigilancia 3. Centro Panamericano de Ecología Humana y Salud, Organización Panamericana de la Salud, Organización Mundial de la Salud, México, p 70

    Google Scholar 

  • Genten F, Terwinghe E, Danguy A (2009) Atlas of fish histology. J Fish Biol 75. . USA: Science Publishers:757–758

    Google Scholar 

  • Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45(1):46–52

    CAS  PubMed  Google Scholar 

  • Guzmán-García X (2007) Empleo de biomarcadores para evaluar el proceso de daño en ostión Crassostrea virginica y su respuesta ambiental. Universidad Autónoma Metropolitana, México, p 100

    Google Scholar 

  • Hanson PJ (1997) Response of hepatic trace element concentrations in fish exposed to elemental and organic contaminants. Estuaries 20(4):659

    CAS  Google Scholar 

  • Helfman G, Collette B, Facey D (1997) The diversity of fishes. Wiley, Malden

    Google Scholar 

  • Hellawell JM (1989) Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science, London, p 546

    Google Scholar 

  • Hernández E, Figueroa J, Iregui C (2009) Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J Fish Dis 32(3):247–252

    PubMed  Google Scholar 

  • Hoekstra KA, Iwama G, Nichols CR et al (1999) Increased heat shock protein expression after stress in Japanese Quail. Stress 2:265–272

    Google Scholar 

  • Huggett RJ, Kimerle RA, Mehrle PM et al (1992) Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Lewis Publishers, Boca Raton, p 347

    Google Scholar 

  • Humphrey JD (2007) Systemic pathology of fish: a text and atlas of normal tissues in teleosts and their response in disease. J Fish Dis 30(6):381–382

    Google Scholar 

  • Johnson LL, Stehr CM, Olson OP et al (1993) Chemical contaminants and hepatic lesions in winter flounder (Pleuronectes americanus) from the northeast coast of the United States. Environ Sci Technol 27(13):2759–2771

    CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39(1):267–294

    CAS  PubMed  Google Scholar 

  • Klatt EC (2006) Robbins and Cotran atlas of pathology, 3rd edn. Elsevier Saunder, Savannah, p 600

    Google Scholar 

  • Koca YB, Koca S, Yıldız Ş et al (2005) Investigation of histopathological and cytogenetic effects on Lepomis gibbosus (Pisces: Perciformes) in the Çine stream (Aydın/Turkey) with determination of water pollution. Environ Toxicol 20(6):560–571

    CAS  PubMed  Google Scholar 

  • Kuklyte L (2012) Mercury contamination in pelagic fishes of the Gulf of Mexico. Texas A&M University, College Station

    Google Scholar 

  • Lacerda LD, Paraquetti HHM, Marins RV et al (2000) Mercury content in shark species from the south-eastern Brazilian coast. Rev Bras Biol 60:571–576

    CAS  Google Scholar 

  • Landis WG, Yu MH (1999) Introduction to environmental toxicology. Lewis Publishers, New York, p 390

    Google Scholar 

  • Liu D, Chen Z, Zhou X (2012) Detection of heat shock proteins 70 in the gill, liver, and cardiac muscle of Carassius auratus with confocal microscopy. Microsc Res Tech 75(4):531–536

    CAS  PubMed  Google Scholar 

  • Maddock DM, Burton MPM (1998) Gross and histological observations of ovarian development and related condition changes in American plaice. J Fish Biol 53(5):928–944

    Google Scholar 

  • Mancera-RodrÍguez NJ, Álvarez-León R (2006) Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuícolas de Colombia. Acta Biológica Colombiana 11(1):3–23

    Google Scholar 

  • Martínez-Jerónimo F (1991) El papel del bioensayo en la evaluación de la toxicidad acuática. In: Figueroa MC et al (eds) Fisicoquímica y Biología de las lagunas Costeras Mexicanas. “Grandes temas de la Hidrobiología”. UAMI, México, pp 57–65

    Google Scholar 

  • Mohamed FAS (2009) Histopathological Studies on Tilapia zillii and Solea vulgaris from Lake Qarun, Egypt. World J Fish and Marine Sci 1(1):29–39

    Google Scholar 

  • Monteiro LR, Costa V, Furnes RW et al (1996) Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar Ecol Prog Ser 141:21–25

    CAS  Google Scholar 

  • Moreno Grau MD (2003) Toxícología ambiental. Evaluación de riesgo para la salud humana. Madrid, España: McGraw-Hill

    Google Scholar 

  • Mughal M, Malkani N, Jahan N (2004) Histopathological changes in kidney and muscle of Labeo rohita due to cadmium intoxication. Biologia 50:39–45

    CAS  Google Scholar 

  • Mumford S, Heidel J, Smith C, et al (2007) Fish histology and histopathology manual. U. S. Fish & Wildlife Service: National Conservation Training Center, p 356. USA

    Google Scholar 

  • Nollen EA, Morimoto RI (2002) A heat shock response: cellular and molecular responses to stress, misfolded proteins, and diseases associated with protein aggregation. In: Wiley J (ed) Encyclopedia of molecular medicine. Wiley, New York, pp 1553–1556

    Google Scholar 

  • Nuñez G, Bautista-Ordoñez J, Rosiles-Martinez R (1998) Concentración y distribución de mercurio en tejidos del cazón (Rhizoprionodon terraenovae) del Golfo de México. Vet Mex 29:15–21

    Google Scholar 

  • Padrós F, Zarza C (2005) Manual de Técnicas Básicas de diagnóstico patológico en peces. In: V curso de Ictiopatología Práctica para Piscicultores. Situación Sanitaria Actual del cultivo de la Dorada y Lubina

    Google Scholar 

  • Páez-Osuna F (2005) Efectos de los metales, in Golfo de México. Contaminación e Impacto ambiental: Diagnostico y Tendencias, Botello A, et al, Editors., Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México: Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología: México. p. 696

    Google Scholar 

  • Ploetz DM, Fitts BE, Rice TM (2007) Differential accumulation of heavy metals in muscle and liver of a marine fish, (king mackerel, Scomberomorus cavalla Cuvier) from the northern Gulf of Mexico, USA. Bull Environ Contam Toxicol 78(2):134–137

    CAS  PubMed  Google Scholar 

  • Radlowska M, Pempkowiak J (2002) Stress-70 as indicator of heavy metals accumulation in blue mussel Mytilus edulis. Environ Int 27(8):605–608

    CAS  PubMed  Google Scholar 

  • Rajeshkumar S, Munuswamy N (2011) Impact of metals on histopathology and expression of HSP 70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, South East Coast, India. Chemosphere 83(4):415–421

    CAS  PubMed  Google Scholar 

  • Rand GM, Wella PG, McCarthy JF (1995) Introduction to aquatic ecology. In: Rand GM (ed) Fundamentals of aquatic toxicology. Taylor and Francis, London, pp 3–53

    Google Scholar 

  • Regnell O, Ewald G, Lord E (1997) Factors controlling temporal variation in methyl mercury levels in sediment and water in a seasonally stratified lake. Limnol Oceanogr 42(8):1784–1795

    CAS  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22(2):81–113

    CAS  Google Scholar 

  • Sander B (1990) In: JF MC, Shugart LR (eds) Stress proteins: potential as multitiered biomarkers, in biomarkers of environmental contamination. Lewis Publishers, Boca Raton, pp 165–192

    Google Scholar 

  • Stafford CP, Haines TA (1997) Mercury concentrations in Maine sport fishes. Trans Am Fish Soc 126(1):144–152

    CAS  Google Scholar 

  • Svobodová Z, Lloyd R, Máchová J et al (1993) Water quality and fish health. FAO, Roma, p 67

    Google Scholar 

  • Takashima F, Hibiya T (1995) An atlas of fish histology: normal and pathological features, 2nd edn. Kodansha Limited, Tokyo

    Google Scholar 

  • Treer T, Šprem N, Torcu-Koc H et al (2008) Length–weight relationships of freshwater fishes of Croatia. J Appl Ichthyol 24(5):626–628

    Google Scholar 

  • Ureña-Robles R (2007) Metalotioneínas en peces y gasterópodos: su aplicación en la evaluación de la contaminación. In: Departamento de Biología Funcional. Universidad de Valencia, Valencia, p 218

    Google Scholar 

  • Vázquez FG, Sharma V, Mendoza QA et al (2001) Metals in fish and shrimp of the Campeche Sound, Gulf of Mexico. Bull Environ Contam Toxicol 67:756–762

    PubMed  Google Scholar 

  • Wang D, Ueng JP, Huang BQ (2004) Structural changes in the muscular tissue of thornfish (Terapon jarbua, Forsskal) under TBT (tributyltin) exposure. J Fish Soc Taiwán 31:225–234

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Meztli Matadamas Guzman for her comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xochitl Guzmán-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez-Trejo, V., Becerra-Amezcua, P., Hernández-Calderas, I., Romero, P.R., Vázquez-Botello, A., Guzmán-García, X. (2019). Health Diagnosis of the Fish Scomberomorus cavalla from Tecolutla, Ver. México. In: Gómez-Oliván, L. (eds) Pollution of Water Bodies in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-27296-8_16

Download citation

Publish with us

Policies and ethics