Skip to main content

TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11663))

Included in the following conference series:

Abstract

The utilization of different types of brain images has been expanding, which makes manually examining each image a labor-intensive task. This study introduces a brain tumor segmentation method that uses two parallel U-Net with an asymmetric residual-based deep convolutional neural network (TPUAR-Net). The proposed method is customized to segment high and low grade glioblastomas identified from magnetic resonance imaging (MRI) data. Varieties of these tumors can appear anywhere in the brain and may have practically any shape, contrast, or size. Thus, this study used deep learning techniques based on adaptive, high-efficiency neural networks in the proposed model structure. In this paper, several high-performance models based on convolutional neural networks (CNNs) have been examined. The proposed TPUAR-Net capitalizes on different levels of global and local features in the upper and lower paths of the proposed model structure. In addition, the proposed method is configured to use the skip connection between layers and residual units to accelerate the training and testing processes. The TPUAR-Net model provides promising segmentation accuracy using MRI images from the BRATS 2017 database, while its parallelized architecture considerably improves the execution speed. The results obtained in terms of Dice, sensitivity, and specificity metrics demonstrate that TPUAR-Net outperforms other methods and achieves the state-of-the-art performance for brain tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 68(1), 7–30 (2018). https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  2. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/j.media.2016.05.004

    Article  Google Scholar 

  3. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A.: Classification of brain tumor MRIs using a kernel support vector machine. In: Li, H., Nykänen, P., Suomi, R., Wickramasinghe, N., Widén, G., Zhan, M. (eds.) WIS 2016. CCIS, vol. 636, pp. 151–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44672-1_13

    Chapter  Google Scholar 

  4. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A.: Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP J. Image Video Process. 2018(1), 97 (2018). https://doi.org/10.1186/s13640-018-0332-4

    Article  Google Scholar 

  5. Soltaninejad, M., et al.: Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int. J. Comput. Assist. Radiol. Surg. 12(2), 183–203 (2017). https://doi.org/10.1007/s11548-016-1483-3

    Article  Google Scholar 

  6. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A.: Design and implementation of a computer-aided diagnosis system for brain tumor classification. In: 2016 28th International Conference on Microelectronics (ICM), pp. 73–76, 17–20 December 2016. https://doi.org/10.1109/ICM.2016.7847911

  7. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016). https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  8. Pereira, S., Oliveira, A., Alves, V., Silva, C.A.: On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), pp. 1–4, 16–18 February 2017. https://doi.org/10.1109/ENBENG.2017.7889452

  9. de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 20–28, June 2015. https://doi.org/10.1109/CVPRW.2015.7301312

  10. Xiao, Z., et al.: A deep learning-based segmentation method for brain tumor in MR images. In: 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), pp. 1–6 (2016). https://doi.org/10.1109/ICCABS.2016.7802771

  11. Casamitjana, A., Puch, S., Aduriz, A., Vilaplana, V.: 3D convolutional neural networks for brain tumor segmentation: a comparison of multi-resolution architectures. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. Lecture Notes in Computer Science, vol. 10154, pp. 150–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_15

    Chapter  Google Scholar 

  12. Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. Lecture Notes in Computer Science, vol. 10154, pp. 75–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_8

    Chapter  Google Scholar 

  13. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  14. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 61–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_6

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  17. Miller, J.W., Goodman, R., Smyth, P.: On loss functions which minimize to conditional expected values and posterior probabilities. IEEE Trans. Inf. Theor. 39(4), 1404–1408 (1993). https://doi.org/10.1109/18.243457

    Article  MATH  Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 448–456, 06–11 July 2015. http://dl.acm.org/citation.cfm?id=3045118.3045167, JMLR.org

  19. Le, H.T., Pham, H.T.T.: Brain tumour segmentation using U-Net based fully convolutional networks and extremely randomized trees. Vietnam J. Sci. Technol. Eng. 60(3), 19–25 (2018). https://doi.org/10.31276/VJSTE.60(3).191

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ismail Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abd-Ellah, M.K., Khalaf, A.A.M., Awad, A.I., Hamed, H.F.A. (2019). TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11663. Springer, Cham. https://doi.org/10.1007/978-3-030-27272-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27272-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27271-5

  • Online ISBN: 978-3-030-27272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics