Skip to main content

Identifying Diagnostically Complex Cases Through Ensemble Learning

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11663))

Included in the following conference series:

Abstract

Computer-Aided Diagnosis systems have been used as second readers in the medical imaging diagnostic process. In this study, we aim to identify cases that are hard to diagnose and lead to interpretation variability among medical experts. We propose a combination of image features and advanced machine learning classifiers to predict the degree of malignancy and determine the level of diagnostic difficulty by looking where these classifiers collectively fail. Using the NIH/NCI Lung Image Database Consortium (LIDC) dataset and four ensemble learning algorithms (bagging, random forest, AdaBoost, and a heterogeneous ensemble with decision trees, support vector machines, and k-nearest neighbors), our results show that we can not only detect difficult cases, but we are also able to identify what imaging characteristics or features make these cases hard to diagnostically interpret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong, J., Liu, J.-Y., Sun, X.-W., Zheng, B., Nie, S.-D.: Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Phys. Med. Biol. 63(3), 035036 (2018)

    Article  Google Scholar 

  2. Jalalian, A., Mashohor, S., Mahmud, R., Karasfi, B., Saripan, M.I.B., Ramli, A.R.B.: Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI J. 16, 113 (2017)

    Google Scholar 

  3. Tamai, N., et al.: Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: a pilot study. Endosc. Int. Open 5(8), E690 (2017). Learning for Clinical Decision Support, pp. 74–82. Springer (2018)

    Google Scholar 

  4. Jing, H., Yang, Y.: Image retrieval for computer-aided diagnosis of breast cancer. In: 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI), pp. 9–12. IEEE (2010)

    Google Scholar 

  5. Kaya, A., Can, A.B.: A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. J. Biomed. Inform. 56, 69–79 (2015)

    Article  Google Scholar 

  6. Goncalves, L., Novo, J., Cunha, A., Campilho, A.: Learning lung nodule malignancy likelihood from radiologist annotations or diagnosis data. J. Med. Biol. Eng. 38(3), 424–442 (2017)

    Article  Google Scholar 

  7. Riely, A., Sablan, K., Xiaotao, T., Furst, J., Raicu, D.: Reducing annotation cost and uncertainty in computer-aided diagnosis through selective iterative classification. In: Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414, p. 94141 K. International Society for Optics and Photonics (2015)

    Google Scholar 

  8. Causey, J.L., et al.: Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci. Rep. 8(1), 9286 (2018)

    Article  Google Scholar 

  9. Liu, L., Dou, Q., Chen, H., Olatunji, I.E., Qin, J., Heng, P.-A.: MTMR-net: multi-task deep learning with margin ranking loss for lung nodule analysis. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_9

    Chapter  Google Scholar 

  10. Hoo-Chang, S., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285 (2016)

    Article  Google Scholar 

  11. Lin, H., Yang, X., Wang, W.: A content-boosted collaborative filtering algorithm for personalized training in interpretation of radiological imaging. J. Digital Imaging 27(4), 449–456 (2014)

    Article  Google Scholar 

  12. Wang, M., et al.: Predicting false negative errors in digital breast tomosynthesis among radiology trainees using a computer vision-based approach. Expert Syst. Appl. 56, 1–8 (2016)

    Article  Google Scholar 

  13. Zamacona, J.R., Niehaus, R., Rasin, A., Furst, J.D., Raicu, D.S.: Assessing diagnostic complexity: an image feature-based strategy to reduce annotation costs. Comput. Biol. Med. 62, 294–305 (2015)

    Article  Google Scholar 

  14. Affenit, R.N., Barns, E.R., Furst, J.D., Rasin, A., Raicu, D.S.: Building confidence and credibility into cad with belief decision trees. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 101343Z. International Society for Optics and Photonics (2017)

    Google Scholar 

  15. Berglin, S., Shin, E., Furst, J., Raicu, D.: Efficient learning in computer-aided diagnosis through label propagation. In: 2019 Society of Photographic Instrumentation Engineers (SPIE) Medical Imaging (2019)

    Google Scholar 

  16. Armato III, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Google Scholar 

  17. Zinovev, D., Raicu, D., Furst, J., Armato III, S.G.: Predicting radiological panel opinions using a panel of machine learning classifiers. Algorithms 2(4), 1473–1502 (2009)

    Article  Google Scholar 

  18. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  20. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yu , Yiyang Wang , Jacob Furst or Daniela Raicu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Y., Wang, Y., Furst, J., Raicu, D. (2019). Identifying Diagnostically Complex Cases Through Ensemble Learning. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11663. Springer, Cham. https://doi.org/10.1007/978-3-030-27272-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27272-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27271-5

  • Online ISBN: 978-3-030-27272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics