Skip to main content

Neuroenhancement at Work: Addressing the Ethical, Legal, and Social Implications

  • Chapter
  • First Online:
Organizational Neuroethics

Part of the book series: Advances in Neuroethics ((AIN))

Abstract

Neuroenhancement is associated with a wide range of existing, emerging, and future biomedical technologies that are intended to improve human cognitive performance and mitigate—if not reverse—human error. Neuroenhancement in classrooms, universities, and the military has been discussed at length, but the workplace has been largely omitted from the conversation until now. By providing examples from branches of the commercial market that are rarely linked with cognitive enhancement in the literature, we argue that neuroenhancement at work is likely to become a major challenge in the labor market. Therefore, we focus here on the specific application of neuroenhancements to the workplace. Central issues involve both drugs and devices, some of which are well-trodden ethical concerns while others are novel challenges. We conclude with a brief discussion and outline of a discourage-use policy that has the potential to mitigate the challenges of neuroenhancement at work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Academy of Medical Sciences. Human enhancement and the future of work. In: Joint report of the Academy of Medical Sciences, the British Academy, the Royal Academy of Engineering and the Royal Society. 2012. http://royalsociety.org/upload-edFiles/Royal_Society_Content/policy/projects/human-enhancement/2012-11-06-Human-enhancement.pdf. Accessed 10 Nov 2012.

  • Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018;11(1):108–17.

    Article  CAS  PubMed  Google Scholar 

  • Appel JM. When the boss turns pusher: a proposal for employee protections in the age of cosmetic neurology. J Med Ethics. 2008;34(8):616–8.

    Article  CAS  PubMed  Google Scholar 

  • Ball K. Workplace surveillance: an overview. Labor Hist. 2010;51(1):87–106.

    Article  Google Scholar 

  • Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med. 2007;78(5):B231–44.

    PubMed  Google Scholar 

  • Berlim MT, Van den Eynde F, Daskalakis ZJ. Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology. 2013;38(4):543.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL, Morris RG. Introduction. Long-term potentiation and structure of the issue. Philos Trans R Soc B. 2003;358(1432):607.

    Article  Google Scholar 

  • British Medical Association. Boosting your brainpower: ethical aspects of cognitive enhancements. A discussion paper from the British Medical Association. London: BMA; 2007.

    Google Scholar 

  • Caidwell Jr JA, Smythe III NK, Caidwell J, Hall KK, Norman DN. The effects of modafinil on aviator performance during 40 hours of continuous wakefulness: a UH-60 helicopter simulator study. Army Aeromedical Research Unit Fort Rucker Al; 1999. Report No.: 99-17.

    Google Scholar 

  • Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TD, Calhoun VD, Raybourn EM, Garcia CM, Wassermann EM. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage. 2012;59(1):117–28.

    Article  PubMed  Google Scholar 

  • Coates McCall I, Illes J. Owning ethical innovation: claims about commercial brain wearable technologies. International Neuroethics Society Annual Meeting. 2018. Abstract submitted for publication.

    Google Scholar 

  • Dodge T, Williams KJ, Marzell M, Turrisi R. Judging cheaters: is substance misuse viewed similarly in the athletic and academic domains? Psychol Addict Behav. 2012;26(3):678–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubljević V. Principles of justice as the basis for public policy on psychopharmacological cognitive enhancement. Law Innov Technol. 2012a;4(1):67–83.

    Article  Google Scholar 

  • Dubljević V. Toward a legitimate public policy on cognition-enhancement drugs. AJOB Neurosci. 2012b;3(3):29–33.

    Article  Google Scholar 

  • Dubljević V. Prohibition or coffee shops: regulation of amphetamine and methylphenidate for enhancement use by healthy adults. Am J Bioeth. 2013a;13(7):23–33. https://doi.org/10.1080/15265161.2013.794875.

    Article  PubMed  Google Scholar 

  • Dubljević V. Cognitive enhancement, rational choice and justification. Neuroethics. 2013b;6(1):179–87.

    Article  Google Scholar 

  • Dubljević V. Neurostimulation devices for cognitive enhancement: toward a comprehensive regulatory framework. Neuroethics. 2015a;8(2):115–26.

    Article  Google Scholar 

  • Dubljević V. Cognitive enhancement: a glance at the future and ethical considerations. In: Knafo S, Venero C, editors. Cognitive enhancement. Amsterdam: Elsevier; 2015b. p. 343–65.

    Chapter  Google Scholar 

  • Dubljević V. Enhancement with modafinil: benefiting or harming the society? In: Jotterand F, Dubljević V, editors. Cognitive enhancement: ethical and policy implications in international perspectives. New York: Oxford University Press; 2016. p. 259–74.

    Chapter  Google Scholar 

  • Dubljević V, Racine E. Moral enhancement meets normative and empirical reality: assessing the practical feasibility of moral enhancement neurotechnologies. Bioethics. 2017;31(5):338–48.

    Article  PubMed  Google Scholar 

  • Dubljević V, Ryan CJ. Cognitive enhancement with methylphenidate and modafinil: conceptual advances and societal implications. Neurosci Neuroecon. 2015;4:25–33. https://doi.org/10.2147/NAN.S61925.

    Article  Google Scholar 

  • Dubljević V, Sattler S, Racine E. Cognitive enhancement and academic misconduct: a study exploring their frequency and relationship. Ethics Behav. 2014;24(5):408–20.

    Article  Google Scholar 

  • Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front Hum Neurosci. 2017;11:51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada A, Kelley AM, Webb CM, Athy JR, Crowley JS. Modafinil as a replacement for dextroamphetamine for sustaining alertness in military helicopter pilots. Aviat Space Environ Med. 2012;83(6):556–64.

    Article  CAS  PubMed  Google Scholar 

  • Faulmüller N, Malsen H, Savulescu J. Pharmacological cognitive enhancement—how neuroscientific research could advance ethical debate. Front Syst Neurosci. 2014;8:1–12. https://doi.org/10.3389/fnsys.2014.00107.

    Article  Google Scholar 

  • Fitz NS, Reiner PB. The challenge of crafting policy for do-it-yourself brain stimulation. J Med Ethics. 2013;41:410–2.

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30.

    Article  PubMed  Google Scholar 

  • Gersner R, Oberman L, Sanchez MJ, Chiriboga N, Kaye HL, Pascual-Leone A, Libenson M, Roth Y, Zangen A, Rotenberg A. H-coil repetitive transcranial magnetic stimulation for treatment of temporal lobe epilepsy: a case report. Epilepsy Behav Case Rep. 2016;5:52–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi SE, Thickbroom GW, Rossini PM. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosbras MH, Paus T. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci. 2002;14(7):1109–20.

    Article  PubMed  Google Scholar 

  • Grosbras MH, Paus T. Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur J Neurosci. 2003;18(11):3121–6.

    Article  PubMed  Google Scholar 

  • Horvath JC, Forte JD, Carter O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 2015a;8(3):535–50.

    Article  PubMed  Google Scholar 

  • Horvath JC, Forte JD, Carter O. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia. 2015b;66:213–36.

    Article  PubMed  Google Scholar 

  • Illes J. Not forgetting. Am J Bioeth. 2007;7(9):3–4.

    Article  Google Scholar 

  • Illieva I, Boland J, Farah MJ. Objective and subjective cognitive enhancing effects of mixed amphetamine salts in healthy people. Neuropharmacology. 2013;64:496–505.

    Article  CAS  Google Scholar 

  • Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43(3):192–9.

    Article  PubMed  Google Scholar 

  • Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage. 2014;85:961–70.

    Article  PubMed  Google Scholar 

  • Markets and Markets. Brain monitoring market by product (MRI, CT, PET, EEG, EMG, MEG, TCD, ICP, Electrodes, Sensors, Gels, Cables), procedure (invasive, non-invasive), disease (TBI, stroke, dementia, epilepsy) & end user (hospital, clinic, ASC, ambulance)—forecasts to 2021. 2017. https://www.marketsandmarkets.com/Market-Reports/brain-monitoring-devices-market-909.html?gclid=EAIaIQobChMIiPqg1e7l2wIVBGt-Ch1jYQewEAAYASAAEgLf6_D_BwE. Accessed 21 Jun 2018.

  • Marron EM, Viejo-Sobera R, Palaus M, Boixadós M, Valero-Cabre A, Redolar-Ripoll D. P237 Modulating executive functions and working memory performance on clinical neuropsychological tasks with theta burst transcranial magnetic stimulation. Clin Neurophysiol. 2017;128(3):e130–1.

    Article  Google Scholar 

  • Martin DM, McClintock SM, Forster JJ, Lo TY, Loo CK. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: a systematic review and meta-analysis of individual task effects. Depress Anxiety. 2017;34(11):1029–39.

    Article  PubMed  Google Scholar 

  • Medical Bureau of Roadside Safety. Report on roadside drug testing and equipment and related matters. Dublin: Medical Bureau of Roadside Safety; 2012.

    Google Scholar 

  • Medina J, Cason S. No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex. 2017;94:131–41.

    Article  PubMed  Google Scholar 

  • Miler JA, Meron D, Baldwin DS, Garner M. The effect of prefrontal transcranial direct current stimulation on attention network function in healthy volunteers. Neuromodulation. 2017;21(4):355–61.

    Article  PubMed  Google Scholar 

  • Millán JR, Renkens F, Mourino J, Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng. 2004 Jun;51(6):1026–33.

    Article  Google Scholar 

  • NISSAN MOTOR Co., Ltd. Brain-to-Vehicle [Internet]. NISSAN|CORPORATE INFORMATION|Outline of Company TOP. [cited 2018 May 16]. Available from https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/b2v.html.

  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge B, Lucke J, Hall W. A comparison of attitudes toward cognitive enhancement and legalized doping in sport in a community sample of Australian adults. Am J Bioeth Primary Res. 2012;3(4):81–6.

    Google Scholar 

  • Pettey C. Wearables hold the key to connected health monitoring [Internet]. Gartner.com. 2018 [cited 2018 Oct 11]. Available from https://www.gartner.com/smarterwithgartner/wearables-hold-the-key-to-connected-health-monitoring/

  • Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp. 2011;32(8):1236–49.

    Article  PubMed  Google Scholar 

  • Racine E, Forlini C. Expectations regarding cognitive enhancement create substantial challenges. J Med Ethics. 2009;35(8):469–70.

    Article  CAS  PubMed  Google Scholar 

  • Ranisch R, Garofoli D, Dubljević V. ‘Clock shock’, motivational enhancement and performance maintenance in adderall use. AJOB Neurosci. 2013;4(1):13–4.

    Article  Google Scholar 

  • Rawls J. The idea of public reason revisited. Univ Chic Law Rev. 1997;64(3):765–807.

    Article  Google Scholar 

  • Repantis D, Schlattmann P, Laisney O, Heuser I. Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res. 2010;62:187–206.

    Article  CAS  PubMed  Google Scholar 

  • Roads and Track Authority [RTA]. Roadside drug testing. Sydney: New South Wales Centre for Road Safety. 2009. http://www.rta.nsw.gov.au/heavyvehicles/downloads/hv_drug_testing_dl1.html. Accessed 2 May 2013.

  • Rutherford G, Lithgow B, Moussavi Z. Short and long-term effects of rTMS treatment on Alzheimer’s disease at different stages: a pilot study. J Exp Neurosci. 2015;9:JEN-S24004.

    Article  Google Scholar 

  • Science and Technology Options Assessment [STOA]. Human enhancement study. The Hague: Rathenau Institute; 2009.

    Google Scholar 

  • Sharwood LN, Elkington J, Meuleners L, Ivers R, Boufous S, Stevenson M. Use of caffeinated substances and risk of crashes in long distance drivers of commercial vehicles: case-control study. BMJ. 2013;346:f1140. https://doi.org/10.1136/bmj.f1140.

    Article  PubMed  Google Scholar 

  • SmartCap Technologies. SmartCap Technologies|Measure Alertness. Eliminate Fatigue [Internet]. SmartCapTech. [cited 2018 Jun 11]. Available from https://www.smartcaptech.com/

  • Snyder A. Explaining and inducing savant skills: privileged access to lower level, less-processed information. Philos Trans R Soc B 2009;364(1522):1399–405. Accessed 11 Apr 2013.

    Google Scholar 

  • Snyder A, Bahramali H, Hawker T, Mitchell DJ. Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception. 2006;35(6):837–45.

    Article  PubMed  Google Scholar 

  • Steenbergen L, Sellaro R, Hommel B, Lindenberger U, Kühn S, Colzato LS. “Unfocus” on foc. us: commercial tDCS headset impairs working memory. Exp Brain Res. 2016;234(3):637–43.

    Article  PubMed  Google Scholar 

  • Takabi H, Bhalotiya A, Alohaly M. Brain computer interface (BCI) applications: privacy threats and countermeasures. In Collaboration and Internet Computing (CIC), 2016 IEEE 2nd International Conference. 2016 Nov 1. IEEE. p. 102–11.

    Google Scholar 

  • Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teplan M. Fundamental of EEG measurement. Meas Sci Rev. 2002;2(2):1–11.

    Google Scholar 

  • Töpper R, Mottaghy FM, Brügmann M, Noth J, Huber W. Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res. 1998;121(4):371–8.

    Article  PubMed  Google Scholar 

  • Turriziani P. Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive impairment: the role of the right dorsolateral prefrontal cortex. Front Hum Neurosci. 2012;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Utz KS, Dimova V, Oppenländer K, Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia. 2010;48(10):2789–810.

    Article  PubMed  Google Scholar 

  • Wexler A. A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States. J Law Biosci. 2016;2(3):669–96.

    Google Scholar 

  • Williams JA, Pascual-Leone A, Fregni F. Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther. 2010;90(3):398–410.

    Article  PubMed  Google Scholar 

  • Wurzman R, Hamilton R, Pascual-Leone A, Fox M. An open letter concerning do-it-yourself (DIY) users of transcranial direct current stimulation (tDCS). Ann Neurol. 2017;80(1):1–4. https://doi.org/10.1002/ana.24689.

    Article  Google Scholar 

  • Zaehle T, Sandmann P, Thorne JD, Jäncke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zohny H. The myth of cognitive enhancement drugs. Neuroethics. 2015;8:257–69. https://doi.org/10.1007/s12152-015-9232-9.

    Article  Google Scholar 

Download references

Acknowledgements

VD is supported by the Faculty Research and Professional Development program at NC State University. This project was also supported in part by Technical Safety BC, Vancouver, Canada (ICM and JI) and Neuroethics Canada. JI is Canada Research Chair in Neuroethics. Special thanks go to Abigail Scheper for her help with language editing and formatting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veljko Dubljević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubljević, V., McCall, I.C., Illes, J. (2020). Neuroenhancement at Work: Addressing the Ethical, Legal, and Social Implications. In: Martineau, J., Racine, E. (eds) Organizational Neuroethics. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-030-27177-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27177-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27176-3

  • Online ISBN: 978-3-030-27177-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics