Skip to main content

Role of Earth-Abundant/Carbonaceous Electrocatalysts as Cocatalyst for Solar Water Splitting

  • Chapter
  • First Online:
  • 1625 Accesses

Abstract

Solar energy can be tapped and stored efficiently using photoelectrochemical (PEC) cells. PEC cell utilizes influx of photons to drive uphill chemical reactions and thereby transforming their inherent energy into chemicals bonds. PEC reaction is one of the most important reactions for generating hydrogen and oxygen. Moreover, as the reaction is reversed and hydrogen is combusted in presence of oxygen; water is obtained as by-product. A lot of research efforts are underway for realizing efficient photoactive material that can absorb sunlight in visible region and has proper straddling band edges that can oxidize and reduce water. The water oxidation half cell reaction also restrains the technology as water oxidation is slow at the surface of photoanodes compared to other loss processes. Semiconductor (SC) photoanodes modified with earth abundant electrocatalyst (EC) can be a important proposition for realizing electrodes with high photocatalytic activity and stability for proficient PEC splitting of water. This approach allows optimization of different processes such as photon absorption, charge separation and surface catalysis independently. The PEC reactions are catalyzed by electrocatalyst by lowering the activation energy. For PEC H2 generation reaction, the main earth abundant electrocatalyst comprises of transition metal chalcogenides, carbides, phosphides, whereas for O2 generation mixed transition metal oxides can be utilized. Bifunctional (HER/OER) electrocatalyst such as NiFeOOH and Co-Mn oxide nanoparticle can be used for PEC splitting of water. Hybridization of composite photoanodes, provide flexibility for adjustment of different components with different properties but raises new issues at the interfacial forefront.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cox N, Pantazis DA, Neese F, LubitzW (2015) Artificial photosynthesis: understanding water splitting in nature. Interface Focus 5(3):20150009

    Google Scholar 

  2. Gratze lM (1981)Artificial photosynthesis:water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14(12):376–384

    Google Scholar 

  3. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6(8):511

    Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nat 238(5358):37

    Google Scholar 

  5. Prasad M, Sharma V, Rokade A, Jadkar S (2018) Photoelectrochemical cell: a versatile device for sustainable hydrogen production. Photoelectrochemical Sol Cells 30:59–119

    Google Scholar 

  6. Lin F, Bachman BF, Boettcher SW (2015) Impact of electrocatalyst activity and ion permeability on water-splitting photoanodes. J Phys Chem Lett 6(13):2427–2433

    Google Scholar 

  7. Lin F, Boettcher SW (2014) Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat Mater 13(1):81

    Google Scholar 

  8. Nellist MR, Laskowski FA, Lin F, Mills TJ, Boettcher SW (2016) Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 49(4):733–740

    Google Scholar 

  9. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1(1):0003

    Google Scholar 

  10. Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour ofmetals: III. electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem 39(1):163–184

    Google Scholar 

  11. Shaner MR, McKone JR, Gray HB, Lewis NS (2015) Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy Environ Sci 8(10):2977–2984

    Google Scholar 

  12. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277

    Google Scholar 

  13. Parzinger E, Miller B, Blaschke B, Garrido JA, Ager JW, Holleitner A, Wurstbauer U (2015) Photocatalytic stability of single-and few-layer MoS2. ACS Nano 9(11):11302–11309

    Google Scholar 

  14. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227

    Google Scholar 

  15. Kemppainen E, Bodin A, Sebok B, Pedersen T, Seger B, Mei B, Bae D, Vesborg PC, Halme J, Hansen O, Lund PD (2015) Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ Sci 8(10):2991–2999

    Google Scholar 

  16. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catal 2(8):1765–1772

    Google Scholar 

  17. Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW (2010) Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25(1):3–16

    Google Scholar 

  18. Yang X, Liu R, He Y, Thorne J, Zheng Z, Wang D (2015) Enabling practical electrocatalyst assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res 8(1):56–81

    Google Scholar 

  19. Hou Y, Abrams BL, Vesborg PC, Björketun ME, Herbst K, Bech L, Setti AM, Damsgaard CD, Pedersen T, Hansen O, Rossmeisl J (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat Mater 10(6):434

    Google Scholar 

  20. Berglund SP, He H, Chemelewski WD, Celio H, Dolocan A, Mullins CB (2014) p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction. J Am Chem Soc 136(4):1535–1544

    Google Scholar 

  21. Ding Q, Meng F, English CR, Cabán-Acevedo M, Shearer MJ, Liang D, Daniel AS, Hamers RJ, Jin S (2014) Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J Am Chem Soc 136(24):8504–8507

    Google Scholar 

  22. Cabán-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC, Tsai ML, He JH, Jin S (2015) Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 14(12):1245

    Google Scholar 

  23. McKone JR, Warren EL, Bierman MJ, Boettcher SW, Brunschwig BS, Lewis NS, Gray HB (2011) Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ Sci 4(9):3573–3583

    Google Scholar 

  24. Morales-Guio CG, Thorwarth K, Niesen B, Liardet L, Patscheider J, Ballif C, Hu X (2015) Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst. J Am Chem Soc 137(22):7035–7038

    Google Scholar 

  25. Kwon KC, Choi S, Hong K, Moon CW, Shim YS, Kim DH, Kim T, Sohn W, Jeon JM, Lee CH, Nam KT (2016) Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ Sci 9(7):2240–2248

    Google Scholar 

  26. Oh S ,Kim JB, Song JT, Oh J, Kim SH (2017) Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction. J Mater Chem A 5(7):3304–3310

    Google Scholar 

  27. Chen Y, Tran PD, Boix P, Ren Y, Chiam SY, Li Z, Fu K, Wong LH, Barber J (2015) Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. ACS Nano 9(4):3829–3836

    Google Scholar 

  28. Chen CJ, Yang KC, Liu CW, Lu YR, Dong CL, Wei DH, Hu SF, Liu RS (2017) Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy 1(32):422–432

    Google Scholar 

  29. Bao XQ, Petrovykh DY, Alpuim P, Stroppa DG, Guldris N, Fonseca H, Costa M, Gaspar J, Jin C, Liu L (2015) Amorphous oxygen-rich molybdenum oxysulfide decorated p-type silicon microwire arrays for efficient photoelectrochemical water reduction. Nano Energy 1(16):130–142

    Google Scholar 

  30. Kwon KC, Choi S, Lee J, Hong K, Sohn W, Andoshe DM, Choi KS, Kim Y, Han S, Kim SY, Jang HW (2017) Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J Mater Chem A 5(30):15534–15542

    Google Scholar 

  31. Basu M, Zhang ZW, Chen CJ, Chen PT, Yang KC, Ma CG, Lin CC, Hu SF, Liu RS (2015) Heterostructure of Si andCoSe2: a promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew Chem Int Ed 54(21):6211–6216

    Google Scholar 

  32. Zhang H, Ding Q, He D, Liu H, Liu W, Li Z, Yang B, Zhang X, Lei L, Jin S (2016) A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ Sci 9(10):3113–3119

    Google Scholar 

  33. Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129

    Google Scholar 

  34. Zhao J, Cai L, Li H, Shi X, Zheng X (2017) Stabilizing silicon photocathodes by solution deposited Ni–Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett 2(9):1939–1946

    Google Scholar 

  35. Ding Q, Zhai J, Cabán-Acevedo M, Shearer MJ, Li L, Chang HC, Tsai ML, Ma D, Zhang X, Hamers RJ, He JH (2015) Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids. Adv Mater 27(41):6511–6518

    Google Scholar 

  36. Seger B, Laursen AB, Vesborg PC, Pedersen T, Hansen O, Dahl S, Chorkendorff IB (2012) Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew Chem Int Ed 51(36):9128–9131

    Google Scholar 

  37. Fan R, Mao J, Yin Z, Jie J, Dong W, Fang L, Zheng F, Shen M (2017) Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production. ACS Appl Mater Interfaces 9(7):6123–6129

    Google Scholar 

  38. Bao XQ, Cerqueira MF, Alpuim P, Liu L (2015) Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. Chem Commun 51(53):10742–10745

    Google Scholar 

  39. Chen F, Zhu Q, Wang Y, Cui W, Su X, Li Y (2016) Efficient photoelectrochemical hydrogen evolution on silicon photocathodes interfaced with nanostructured NiP2 cocatalyst films. ACS Appl Mater Interfaces 8(45):31025–31031

    Google Scholar 

  40. Lin Y, Battaglia C, Boccard M, Hettick M, Yu Z, Ballif C,Ager JW, JaveyA(2013)Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett 13(11):5615–5618

    Google Scholar 

  41. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309

    Google Scholar 

  42. Tran PD, Pramana SS, Kale VS, Nguyen M, Chiam SY, Batabyal SK, Wong LH, Barber J, Loo J (2012) Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation. Chem Eur J 18(44):13994–13999

    Google Scholar 

  43. Oh S, Song H, Oh J (2017) An optically and electrochemically decoupled monolithic photoelec trochemical cell for high-performance solar-drivenwater splitting. Nano Lett 17(9):5416–5422

    Google Scholar 

  44. McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Biacchi AJ, Lewis NS, Schaak RE (2014) Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem Mater 26(16):4826–4831

    Google Scholar 

  45. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed 51(51):12703–12706

    Google Scholar 

  46. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270

    Google Scholar 

  47. Yang J, Walczak K, Anzenberg E, Toma FM, Yuan G, Beeman J, Schwartzberg A, Lin Y, Hettick M, Javey A, Ager JW (2014) Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. J Am Chem Soc 136(17):6191–6194

    Google Scholar 

  48. Zhou X, Liu R, Sun K, Papadantonakis KM, Brunschwig BS, Lewis NS (2016) 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition. Energy Environ Sci 9(3):892–897

    Google Scholar 

  49. Yang J, Cooper JK, Toma FM, Walczak KA, Favaro M, Beeman JW, Hess LH, Wang C, Zhu C, Gul S, Yano J (2017) A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat Mater 16(3):335

    Google Scholar 

  50. Hill JC, Landers AT, Switzer JA (2015) An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation. Nat Mater 14(11):1150

    Google Scholar 

  51. Abdi FF, Han L, Smets AH, Zeman M, Dam B, Van De Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 29(4):2195

    Google Scholar 

  52. Pijpers JJ, Winkler MT, Surendranath Y, Buonassisi T, Nocera DG (2011) Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc Natl Acad Sci 108(25):10056–10061

    Google Scholar 

  53. Young ER, Costi R, Paydavosi S, Nocera DG, Bulovic´ V (2011) Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. Energy Environ Sci 4(6):2058–2061

    Google Scholar 

  54. Esswein AJ, Surendranath Y, Reece SY, Nocera DG (2011) Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ Sci 4(2):499–504

    Google Scholar 

  55. Ding C, Shi J, Wang D, Wang Z, Wang N, Liu G, Xiong F, Li C (2013) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13):4589–4595

    Google Scholar 

  56. Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, Lanza M, Dai H (2013) High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342(6160):836–840

    Google Scholar 

  57. Zhou X, Liu R, Sun K, Friedrich D, McDowell MT, Yang F, Omelchenko ST, Saadi FH, Nielander AC, Yalamanchili S, Papadantonakis KM (2015) Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ Sci 8(9):2644–2649

    Google Scholar 

  58. Sun K, McDowell MT, Nielander AC, Hu S, Shaner MR, Yang F, Brunschwig BS, Lewis NS (2015) Stable solar-driven water oxidation to O2 (g) by Ni-oxide-coated silicon photoanodes. J Phys Chem Lett 6(4):592–598

    Google Scholar 

  59. Kwak IH, Im HS, Jang DM, Kim YW, Park K, Lim YR, Cha EH, Park J (2016) CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl Mater Interfaces 8(8):5327–5334

    Google Scholar 

  60. Wang HP, Sun K, Noh SY, Kargar A, Tsai ML, Huang MY, Wang D, He JH (2015) High performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett 15(5):2817–2824

    Google Scholar 

  61. Yao T, Chen R, Li J, Han J, Qin W, Wang H, Shi J, Fan F, Li C (2016) Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation. J Am Chem Soc 138(41):13664–13672

    Google Scholar 

  62. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel–iron oxyhydroxide oxygen evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136(18):6744–6753

    Google Scholar 

  63. Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation ofwater by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186–2192

    Google Scholar 

  64. Yuan Y, Gu J, Ye KH, Chai Z, Yu X, Chen X, Zhao C, Zhang Y, Mai W (2016) Combining bulk/surface engineering of hematite to synergistically improve its photoelectrochemical water splitting performance. ACS Appl Mater Interfaces 8(25):16071–16077

    Google Scholar 

  65. Liu W, Liu H, Dang L, Zhang H, Wu X, Yang B, Li Z, Zhang X, Lei L, Jin S (2017) Amorphous cobalt–iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv Func Mater 27(14):1603904

    Google Scholar 

  66. Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596

    Google Scholar 

  67. Li X, Zhang L, Huang M, Wang S, Li X, Zhu H (2016) Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J Mater Chem A 4(38):14789–14795

    Google Scholar 

  68. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974

    Google Scholar 

  69. Li J, Wang Y, Zhou T, Zhang H, Sun X, Tang J, Zhang L, Al-Enizi AM, Yang Z, Zheng G (2015) Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting. J Am Chem Soc 137(45):14305–14312

    Google Scholar 

  70. Xu Y, Kraft M, Xu R (2016) Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev 45(11):3039–3052

    Google Scholar 

  71. Kumar P, Boukherroub R, Shankar K (2018) Sunlight-driven water-splitting using two dimensional carbon based semiconductors. J Mater Chem A 6(27):12876–12931

    Google Scholar 

  72. Kumar S, Karthikeyan S, Lee A (2018) g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2):74

    Google Scholar 

  73. 61)Ye S,Wang R,WuMZ, Yuan YP (2015) A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci 15(358):15–27

    Google Scholar 

  74. Liu M, Xia P, Zhang L, Cheng B, Yu J (2018) Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst. ACS Sustain Chem Eng 6(8):10472–10480

    Google Scholar 

  75. Patnaik S, Martha S, Acharya S, Parida KM (2016) An overview of the modification of gC3N4 with high carbon containing materials for photocatalytic applications. Inorg Chem Front 3(3):336–347

    Google Scholar 

  76. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem Int Ed 53(28):7281–7285

    Google Scholar 

  77. Li J, Zhao Z, Ma Y, Qu Y (2017) Graphene and their hybrid electrocatalysts for water splitting. ChemCatChem 9(9):1554–1568

    Google Scholar 

  78. Hu C, Liu D, Xiao Y, Dai L (2018) Functionalization of graphene materials by heteroatom doping for energy conversion and storage. Prog Nat Sci Mater Int 28(2):121–132

    Google Scholar 

  79. Velasco-Soto MA, Pérez-García SA, Alvarez-Quintana J, Cao Y, Nyborg L, Licea-Jiménez L (2015) Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 1(93):967–973

    Google Scholar 

  80. Yeh TF, Cihláˇr J, Chang CY, Cheng C, Teng H (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16(3):78–84

    Google Scholar 

  81. Yeh TF, Syu JM, Cheng C, Chang TH, Teng H (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Func Mater 20(14):2255–2262

    Google Scholar 

  82. Latorre-Sánchez M, Primo A, García H (2013) P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water–methanol mixtures. Angew Chem Int Ed 52(45):11813–11816

    Google Scholar 

  83. Chen X, Yu Z, Wei L, Zhou Z, Zhai S, Chen J, Wang Y, Huang Q, Karahan HE, Liao X, Chen Y (2019) Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J Mater Chem A 7(2):764–774

    Google Scholar 

  84. Cheng Y, Memar A, Saunders M, Pan J, Liu C, Gale JD, Demichelis R, Shen PK, Jiang SP (2016) Dye functionalized carbon nanotubes for photoelectrochemical water splitting–role of inner tubes. J Mater Chem A 4(7):2473–2483

    Google Scholar 

  85. Tian GL, Zhang Q, Zhang B, Jin YG, Huang JQ, Su DS, Wei F (2014) Toward full exposure of “active sites”: nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv Func Mater 24(38):5956–5961

    Google Scholar 

  86. Sprick RS, Jiang JX, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI (2015) Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 137(9):3265–3270

    Google Scholar 

  87. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 30(6):8508

    Google Scholar 

  88. Liu J, Wen S, Hou Y, Zuo F, Beran GJ, Feng P (2013) Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew Chem Int Ed 52(11):3241–3245

    Google Scholar 

  89. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76

    Google Scholar 

Download references

Acknowledgements

Mohit Prasad is thankful to University Grants Commission, Government of India for Dr. D. S. Kothari PostDoc Fellowship. Vidhika Sharma is thankful to Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi for the Research Associateship. Sandesh Jadkar is also thankful to Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vidhika Sharma or Sandesh Jadkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, M., Sharma, V., Jadkar, S. (2020). Role of Earth-Abundant/Carbonaceous Electrocatalysts as Cocatalyst for Solar Water Splitting. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_8

Download citation

Publish with us

Policies and ethics