Skip to main content

Metal–Organic Frameworks for Electrocatalysis

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

Metal–organic frameworks (MOFs) have recently become prospective materials for electrocatalysis. MOFs constructed via coordination chemistry of inorganic metal nodes and organic ligands, possess the exclusive features over traditional inorganic or organic materials, which include ultrahigh porosity, large surface areas, structural tunability and high stability. Based on these features, MOFs are already being applied in storage and separation, catalysis, optoelectronics, drug delivery and biomedical imaging. Particularly, with the advantageous feature, MOFs have potential to work as efficient electrocatalysts for a variety of redox reactions, such as hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), etc. In this chapter, a discussion has been presented on MOFs, their composites, MOF-derived carbon materials and their performance as electrocatalysts. This chapter will inspire new research direction regarding the development of advanced electrocatalytic materials using MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HER:

Hydrogen evolution reaction

OER:

Oxygen evolution reaction

ORR:

Oxygen reduction reaction

CO2RR:

Carbon dioxide reduction reaction

MOFs:

Metal–organic frameworks

PCPs:

Porous coordination polymers

ZIFs:

Zeolitic imidazolate frameworks

CPE:

Controlled-potential electrolysis

DMF:

Dimethylformamide

DEF:

Diethylformamide

GC:

Glassy carbon

CV:

Cyclic voltammetry

TS:

Tafel slope

TON:

Turnover number

BHT:

Benzenehexathiol

TOF:

Turnover frequency

MoSX:

Molybdenum polysulfide

POMs:

Poly oxometalates

OFP:

Open-framework polyoxometalate

POMOFs:

POM-based metal-organic frameworks

TBA:

Tetrabutylammonium ion

BDC:

1,4-benzene-dicarboxylate

BTB:

Benzenetribenzoate

BTC:

1,3,5-benzenetricarboxylate

H4dcpa:

4,5‐di(4′‐carboxylphenyl)phthalic acid

azene:

(E)‐1,2‐di(pyridin‐4‐yl)diazene

4,4′-bpy:

4,4′-bipyridine

2,2′-bpy:

2,2′-bipyridine

H2adip:

Adipic acid

5-H2bdc:

5-nitroisophthalic acid

Im:

Imidazolate

mim:

2-methylimidazolate

bim:

Benzimidazolate

H2bbta:

1H,5H-benzo(1,2-d:4,5-d′)bistriazole

H2TCPP:

4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate

BHT:

Benzenehexathiol

tht:

Triphenylene-2,3,6,7,10,11-hexathiolate

HITP:

2,3,6,7,10,11-hexaiminotriphenylene

tpy:

2,2′:6′,2′′-terpyridine

H2dcbpy:

2,2′-bipyridine-5,5′-dicarboxylic acid

H2bpdc:

4,4′-biphenyldicarboxylic acid

ade:

Adenine

TBA:

Tetrabutylammonium

BPT:

[1,1′-biphenyl]-3,4′,5-tricarboxylate

trim:

1,3,5-benzenetricarboxylate

biphen:

4,4′-biphenyldicarboxylate

tbapy:

1,3,6,8-tetrakis (p-benzoate) pyrene

Ted:

Triethylene-diamine

PB:

Phosphate buffer

FTO:

Fluorine-doped tin oxide

NF:

Nickel form

NFF:

NiFe alloy foam

GO:

Graphene oxide

GA:

Graphene aerogel

CNTs:

Carbon nanotubes

NPs:

Nanoparticles

NGO:

Nitrogen‐doped graphene oxide

DHT:

Dihydroxyterephthalate

RDE:

Rotating‐disk electrode

NCNHP:

N-doped carbon hollow polyhedron

LDH:

Layered double hydroxide

SURMOF:

Surface-mounted metal–organic framework

SURMOFD:

Surface-mounted metal–organic frameworks derivative

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Google Scholar 

  2. Schröder M (2010) Functional metal-organic frameworks: gas storage, separation and catalysis, 1st edn. Springer, Berlin

    Book  Google Scholar 

  3. Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638

    Article  CAS  Google Scholar 

  4. Wang H, Zhu Q-L, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2:52–80

    Article  CAS  Google Scholar 

  5. Zhou HC, Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

    Article  CAS  Google Scholar 

  6. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    Google Scholar 

  7. Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912

    Article  CAS  Google Scholar 

  8. Farha OK, Wilmer CE, Eryazici I, Hauser BG, Parilla PA, O’Neill K, Sarjeant AA, Nguyen ST, Snurr RQ, Hupp JT (2012) Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls? J Am Chem Soc 134:9860–9863

    Article  CAS  Google Scholar 

  9. Hendon CH, Rieth AJ, Korzyński MD, Dincă M (2017) Grand challenges and future opportunities for metal-organic frameworks. ACS Cent Sci 3:554–563

    Article  CAS  Google Scholar 

  10. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021

    Article  CAS  Google Scholar 

  11. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018

    Article  CAS  Google Scholar 

  12. Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA (2015) Multifunctional metal–organic frameworks: from academia to industrial applications. Chem Soc Rev 44:6774–6803

    Google Scholar 

  13. Kobayashi Y, Jacobs B, Allendorf MD, Long JR (2010) Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal–organic framework. Chem Mater 22:4120–4122

    Article  CAS  Google Scholar 

  14. Hendon CH, Tiana D, Walsh A (2012) Conductive metal–organic frameworks and networks: fact or fantasy? Phys Chem Chem Phys 14:13120–13132

    Article  CAS  Google Scholar 

  15. Stavila V, Talin AA, Allendorf MD (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010

    Article  CAS  Google Scholar 

  16. Silva CG, Corma A, García H (2010) Metal–organic frameworks as semiconductors. J Mater Chem 20:3141–3156

    Article  CAS  Google Scholar 

  17. Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:66

    Article  CAS  Google Scholar 

  18. Sheberla D, Bachman JC, Elias JS, Sun C-J, Shao-Horn Y, Dincă M (2016) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220

    Article  CAS  Google Scholar 

  19. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J Am Chem Soc 136:8859–8862

    Article  CAS  Google Scholar 

  20. Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M (2016) Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat Commun 7:10942

    Article  CAS  Google Scholar 

  21. Pathak A, Shen J-W, Usman M, Wei L-F, Mendiratta S, Chang Y-S, Sainbileg B, Ngue C-M, Chen R-S, Hayashi M, Luo T-T, Chen F-R, Chen K-H, Tseng T-W, Chen L-C, Lu K-L (2019) Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nat Commun 10:1721

    Article  CAS  Google Scholar 

  22. Usman M, Mendiratta S, Lu K-L (2017) Semiconductor metal-organic frameworks: future low-bandgap materials. Adv Mater 29:1605071

    Article  CAS  Google Scholar 

  23. Sivula K, van de Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1:15010

    Article  CAS  Google Scholar 

  24. Turner JA (2004) Sustainable hydrogen production. Science 305:972

    Article  CAS  Google Scholar 

  25. Guan BY, Yu L, Lou XW (2016) A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ Sci 9:3092–3096

    Article  CAS  Google Scholar 

  26. Petit C, Bandosz TJ (2009) MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757

    Article  CAS  Google Scholar 

  27. Dang S, Zhu Q-L, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3:17075

    Article  CAS  Google Scholar 

  28. Xu L, Wang X, Chai L, Li T-T, Hu Y, Qian J, Huang S (2019) Co3O4-anchored MWCNTs network derived from metal–organic frameworks as efficient OER electrocatalysts. Mater Lett

    Google Scholar 

  29. Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139:14143–14149

    Article  CAS  Google Scholar 

  30. Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

  31. Ko M, Mendecki L, Mirica KA (2018) Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem Commun 54:7873–7891

    Article  CAS  Google Scholar 

  32. Yang HM, Song XL, Yang TL, Liang ZH, Fan CM, Hao XG (2014) Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv 4:15720–15726

    Article  CAS  Google Scholar 

  33. Gong Y, Hao Z, Meng J, Shi H, Jiang P, Zhang M, Lin J (2014) Two CoII metal-organic frameworks based on a multicarboxylate ligand as electrocatalysts for water splitting. ChemPlusChem 79:266–277

    Article  CAS  Google Scholar 

  34. Gong Y, Shi H-F, Hao Z, Sun J-L, Lin J-H (2013) Two novel Co(ii) coordination polymers based on 1,4-bis(3-pyridylaminomethyl)benzene as electrocatalysts for oxygen evolution from water. Dalton Trans 42:12252–12259

    Article  CAS  Google Scholar 

  35. Wu Y-P, Zhou W, Zhao J, Dong W-W, Lan Y-Q, Li D-S, Sun C, Bu X (2017) Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angew Chem Int Ed 56:13001–13005

    Article  CAS  Google Scholar 

  36. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67

    Article  CAS  Google Scholar 

  37. Tao L, Lin C-Y, Dou S, Feng S, Chen D, Liu D, Huo J, Xia Z, Wang S (2017) Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: insights into the active centers. Nano Energy 41:417–425

    Article  CAS  Google Scholar 

  38. Wang S, Hou Y, Lin S, Wang X (2014) Water oxidation electrocatalysis by a zeolitic imidazolate framework. Nanoscale 6:9930–9934

    Article  CAS  Google Scholar 

  39. Wang L, Wu Y, Cao R, Ren L, Chen M, Feng X, Zhou J, Wang B (2016) Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS Appl Mater Interfaces 8:16736–16743

    Article  CAS  Google Scholar 

  40. Xue Z, Li Y, Zhang Y, Geng W, Jia B, Tang J, Bao S, Wang H-P, Fan Y, Wei Z-W, Zhang Z, Ke Z, Li G, Su C-Y (2018) Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution. Adv Energy Mater 8:1801564

    Article  CAS  Google Scholar 

  41. Wang X-L, Dong L-Z, Qiao M, Tang Y-J, Liu J, Li Y, Li S-L, Su J-X, Lan Y-Q (2018) Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed 57:9660–9664

    Article  CAS  Google Scholar 

  42. Zhou W, Huang D-D, Wu Y-P, Zhao J, Wu T, Zhang J, Li D-S, Sun C, Feng P, Bu X (2019) Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed 58:4227–4231

    Article  CAS  Google Scholar 

  43. Li F-L, Shao Q, Huang X, Lang J-P (2018) Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 57:1888–1892

    Article  CAS  Google Scholar 

  44. Lu X-F, Liao P-Q, Wang J-W, Wu J-X, Chen X-W, He C-T, Zhang J-P, Li G-R, Chen X-M (2016) An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138:8336–8339

    Article  CAS  Google Scholar 

  45. Mao J, Yang L, Yu P, Wei X, Mao L (2012) Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem Commun 19:29–31

    Article  CAS  Google Scholar 

  46. Usov PM, Huffman B, Epley CC, Kessinger MC, Zhu J, Maza WA, Morris AJ (2017) Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl Mater Interfaces 9:33539–33543

    Article  CAS  Google Scholar 

  47. Song G, Wang Z, Wang L, Li G, Huang M, Yin F (2014) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chin J Catal 35:185–195

    Article  CAS  Google Scholar 

  48. Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10:1100–1109

    Article  CAS  Google Scholar 

  49. Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137:14129–14135

    Article  CAS  Google Scholar 

  50. Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121

    Article  CAS  Google Scholar 

  51. Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X (2015) Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed 54:12058–12063

    Article  CAS  Google Scholar 

  52. Dong R, Zheng Z, Tranca DC, Zhang J, Chandrasekhar N, Liu S, Zhuang X, Seifert G, Feng X (2017) Immobilizing molecular metal dithiolene–diamine complexes on 2D metal–organic frameworks for electrocatalytic H2 production. Chem-A Eur J 23:2255–2260

    Google Scholar 

  53. Qin J-S, Du D-Y, Guan W, Bo X-J, Li Y-F, Guo L-P, Su Z-M, Wang Y-Y, Lan Y-Q, Zhou H-C (2015) Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J Am Chem Soc 137:7169–7177

    Article  CAS  Google Scholar 

  54. Jiang J, Huang L, Liu X, Ai L (2017) Bioinspired cobalt-citrate metal–organic framework as an efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces 9:7193–7201

    Article  CAS  Google Scholar 

  55. Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z, Zhao S, Han M, Gao K, Lu M, Xie X, Chen B, Liu Z, Wang X, Zhang H, Li H, Liu J, Zhang H, Huang X, Huang W (2017) Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11:5800–5807

    Article  CAS  Google Scholar 

  56. Xu Q, Li H, Yue F, Chi L, Wang J (2016) Nanoscale cobalt metal–organic framework as a catalyst for visible light-driven and electrocatalytic water oxidation. New J Chem 40:3032–3035

    Article  CAS  Google Scholar 

  57. Wang H, Yin F-X, Chen B-H, He X-B, Lv P-L, Ye C-Y, Liu D-J (2017) ZIF-67 incorporated with carbon derived from pomelo peels: a highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl Catal B 205:55–67

    Article  CAS  Google Scholar 

  58. Shen J-Q, Liao P-Q, Zhou D-D, He C-T, Wu J-X, Zhang W-X, Zhang J-P, Chen X-M (2017) Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 139:1778–1781

    Article  CAS  Google Scholar 

  59. Gong Y, Shi H-F, Jiang P-G, Hua W, Lin J-H (2014) Metal(II)-induced coordination polymer based on 4-(5-(Pyridin-4-yl)-4H-1,2,4-triazol-3-yl)benzoate as an electrocatalyst for water splitting. Cryst Growth Des 14:649–657

    Article  CAS  Google Scholar 

  60. Dai F, Fan W, Bi J, Jiang P, Liu D, Zhang X, Lin H, Gong C, Wang R, Zhang L, Sun D (2016) A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Trans 45:61–65

    Article  CAS  Google Scholar 

  61. Lions M, Tommasino JB, Chattot R, Abeykoon B, Guillou N, Devic T, Demessence A, Cardenas L, Maillard F, Fateeva A (2017) Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chem Commun 53:6496–6499

    Article  CAS  Google Scholar 

  62. Cho K, Han S-H, Suh MP (2016) Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew Chem Int Ed 55:15301–15305

    Article  CAS  Google Scholar 

  63. Miao P, Li G, Zhang G, Lu H (2014) Co(II)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen. J Energy Chem 23:507–512

    Article  Google Scholar 

  64. Dai X, Liu M, Li Z, Jin A, Ma Y, Huang X, Sun H, Wang H, Zhang X (2016) Molybdenum polysulfide anchored on porous Zr-metal organic framework to enhance the performance of hydrogen evolution reaction. J Phys Chem C 120:12539–12548

    Article  CAS  Google Scholar 

  65. Johnson BA, Bhunia A, Ott S (2017) Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film. Dalton Trans 46:1382–1388

    Article  CAS  Google Scholar 

  66. Lin S, Pineda-Galvan Y, Maza WA, Epley CC, Zhu J, Kessinger MC, Pushkar Y, Morris AJ (2017) Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. ChemSusChem 10:514–522

    Article  CAS  Google Scholar 

  67. Khan MI, Swenson LS (2013) Open-framework hybrid materials and composites from polyoxometalates (Chap. 2). In: New and future developments in catalysis. Elsevier Science

    Google Scholar 

  68. Nohra B, El Moll H, Rodriguez Albelo LM, Mialane P, Marrot J, Mellot-Draznieks C, O’Keeffe M, Ngo Biboum R, Lemaire J, Keita B, Nadjo L, Dolbecq A (2011) Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J Am Chem Soc 133:13363–13374

    Article  CAS  Google Scholar 

  69. Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem Soc Rev 43:4615–4632

    Article  CAS  Google Scholar 

  70. Salomon W, Paille G, Gomez-Mingot M, Mialane P, Marrot J, Roch-Marchal C, Nocton G, Mellot-Draznieks C, Fontecave M, Dolbecq A (2017) Effect of cations on the structure and electrocatalytic response of polyoxometalate-based coordination polymers. Cryst Growth Des 17:1600–1609

    Article  CAS  Google Scholar 

  71. Jahan M, Liu Z, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23:5363–5372

    Article  CAS  Google Scholar 

  72. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  CAS  Google Scholar 

  73. Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Article  CAS  Google Scholar 

  74. Zhu Q-L, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1:220–245

    Article  CAS  Google Scholar 

  75. Guo J, Zhang X, Sun Y, Tang L, Liu Q, Zhang X (2017) Loading Pt nanoparticles on metal-organic frameworks for improved oxygen evolution. ACS Sustain Chem Eng 5:11577–11583

    Article  CAS  Google Scholar 

  76. Hod I, Deria P, Bury W, Mondloch JE, Kung C-W, So M, Sampson MD, Peters AW, Kubiak CP, Farha OK, Hupp JT (2015) A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 6:8304

    Article  CAS  Google Scholar 

  77. Wang H, Yin F, Chen B, Li G (2015) Synthesis of an ε-MnO2/metal–organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J Mater Chem A 3:16168–16176

    Article  CAS  Google Scholar 

  78. Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184

    Article  CAS  Google Scholar 

  79. Duan J, Chen S, Zhao C (2017) Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 8:15341

    Article  CAS  Google Scholar 

  80. Li W, Watzele S, El-Sayed HA, Liang Y, Kieslich G, Bandarenka AS, Rodewald K, Rieger B, Fischer RA (2019) Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal-organic frameworks. J Am Chem Soc 141:5926–5933

    Article  CAS  Google Scholar 

  81. Cao C, Ma D-D, Xu Q, Wu X-T, Zhu Q-L (2019) Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Funct Mater 29:1807418

    Article  CAS  Google Scholar 

  82. Senthil Raja D, Chuah X-F, Lu S-Y (2018) In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv Energy Mater 8:1801065

    Article  CAS  Google Scholar 

  83. Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y (2018) NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater 8:1800584

    Article  CAS  Google Scholar 

  84. Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrogen Energy 39:16179–16186

    Article  CAS  Google Scholar 

  85. He X, Yin F, Li G (2015) A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. Int J Hydrogen Energy 40:9713–9722

    Article  CAS  Google Scholar 

  86. Sohrabi S, Dehghanpour S, Ghalkhani M (2016) Three-dimensional metal-organic framework graphene nanocomposite as a highly efficient and stable electrocatalyst for the oxygen reduction reaction in acidic media. ChemCatChem 8:2356–2366

    Article  CAS  Google Scholar 

  87. Jiang M, Li L, Zhu D, Zhang H, Zhao X (2014) Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator. J Mater Chem A 2:5323–5329

    Article  CAS  Google Scholar 

  88. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    Article  CAS  Google Scholar 

  89. Lei Y, Wei L, Zhai S, Wang Y, Karahan HE, Chen X, Zhou Z, Wang C, Sui X, Chen Y (2018) Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Mater Chem Front 2:102–111

    Article  CAS  Google Scholar 

  90. Yang Y, Lun Z, Xia G, Zheng F, He M, Chen Q (2015) Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ Sci 8:3563–3571

    Article  CAS  Google Scholar 

  91. Zheng F, Xia H, Xu S, Wang R, Zhang Y (2016) Facile synthesis of MOF-derived ultrafine Co nanocrystals embedded in a nitrogen-doped carbon matrix for the hydrogen evolution reaction. RSC Adv 6:71767–71772

    Article  CAS  Google Scholar 

  92. Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150

    Article  CAS  Google Scholar 

  93. Tabassum H, Guo W, Meng W, Mahmood A, Zhao R, Wang Q, Zou R (2017) Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv Energy Mater 7:1601671

    Article  CAS  Google Scholar 

  94. Zhu Z, Yang Y, Guan Y, Xue J, Cui L (2016) Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. J Mater Chem A 4:15536–15545

    Article  CAS  Google Scholar 

  95. Huang T, Chen Y, Lee J-M (2017) Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal-organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustain Chem Eng 5:5646–5650

    Article  CAS  Google Scholar 

  96. Wang T, Zhou Q, Wang X, Zheng J, Li X (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3:16435–16439

    Article  CAS  Google Scholar 

  97. Jayaramulu K, Masa J, Tomanec O, Peeters D, Ranc V, Schneemann A, Zboril R, Schuhmann W, Fischer RA (2017) Electrocatalysis: nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv Funct Mater 27:1700451

    Google Scholar 

  98. Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9:357–390

    Article  CAS  Google Scholar 

  99. Ai L, Tian T, Jiang J (2017) Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain Chem Eng 5:4771–4777

    Article  CAS  Google Scholar 

  100. Liu S, Zhang H, Zhao Q, Zhang X, Liu R, Ge X, Wang G, Zhao H, Cai W (2016) Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 106:74–83

    Article  CAS  Google Scholar 

  101. Chaikittisilp W, Torad NL, Li C, Imura M, Suzuki N, Ishihara S, Ariga K, Yamauchi Y (2014) Synthesis of nanoporous carbon–cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem A Eur J 20:4217–4221

    Article  CAS  Google Scholar 

  102. Xia W, Zhu J, Guo W, An L, Xia D, Zou R (2014) Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A 2:11606–11613

    Article  CAS  Google Scholar 

  103. You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y (2015) Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal 5:7068–7076

    Article  CAS  Google Scholar 

  104. Shang L, Yu H, Huang X, Bian T, Shi R, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2016) Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv Mater 28:1668–1674

    Article  CAS  Google Scholar 

  105. Zhu Q-L, Xia W, Akita T, Zou R, Xu Q (2016) Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv Mater 28:6391–6398

    Article  CAS  Google Scholar 

  106. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong W-C, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618

    Article  CAS  Google Scholar 

  107. He P, Yu X-Y, Lou XW (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56:3897–3900

    Article  CAS  Google Scholar 

  108. Han L, Yu X-Y, Lou XW (2016) Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv Mater 28:4601–4605

    Article  CAS  Google Scholar 

  109. Qu Y, Li Z, Chen W, Lin Y, Yuan T, Yang Z, Zhao C, Wang J, Zhao C, Wang X, Zhou F, Zhuang Z, Wu Y, Li Y (2018) Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 1:781–786

    Article  CAS  Google Scholar 

  110. Wang X, Chen W, Zhang L, Yao T, Liu W, Lin Y, Ju H, Dong J, Zheng L, Yan W, Zheng X, Li Z, Wang X, Yang J, He D, Wang Y, Deng Z, Wu Y, Li Y (2017) Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc 139:9419–9422

    Article  CAS  Google Scholar 

  111. Yang Q, Yang C-C, Lin C-H, Jiang H-L (2019) Metal–organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew Chem Int Ed 58:3511–3515

    Article  CAS  Google Scholar 

  112. Ma S, Goenaga GA, Call AV, Liu D-J (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem A Eur J 17:2063–2067

    Article  CAS  Google Scholar 

  113. Zhu Q-L, Xia W, Zheng L-R, Zou R, Liu Z, Xu Q (2017) Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett 2:504–511

    Article  CAS  Google Scholar 

  114. Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 56:6937–6941

    Article  CAS  Google Scholar 

  115. Zhao R, Liang Z, Gao S, Yang C, Zhu B, Zhao J, Qu C, Zou R, Xu Q (2019) Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew Chem Int Ed 58:1975–1979

    Article  CAS  Google Scholar 

  116. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y (2017) Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 139:17281–17284

    Article  CAS  Google Scholar 

  117. Sun C, Dong Q, Yang J, Dai Z, Lin J, Chen P, Huang W, Dong X (2016) Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res 9:2234–2243

    Article  CAS  Google Scholar 

  118. Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz 2:342–348

    Article  CAS  Google Scholar 

  119. Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455

    Article  CAS  Google Scholar 

  120. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8:14969

    Article  Google Scholar 

  121. Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C-Y, Zhou W, Zhao J, Qiu J (2017) Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater 29:1700874

    Article  CAS  Google Scholar 

  122. Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J (2017) Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv Mater 29:1704117

    Article  CAS  Google Scholar 

  123. Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006

    Article  CAS  Google Scholar 

  124. Li W-J, Liu J, Sun Z-H, Liu T-F, Lü J, Gao S-Y, He C, Cao R, Luo J-H (2016) Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun 7:11830

    Article  CAS  Google Scholar 

  125. Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans DG, Duan X (2016) Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv Mater 28:2337–2344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Long Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Usman, M., Zhu, QL. (2020). Metal–Organic Frameworks for Electrocatalysis. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_2

Download citation

Publish with us

Policies and ethics