Skip to main content

Oxygen Reduction Reaction

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

Polymer electrolyte membrane fuel cells (PEMFCs) and metal air batteries are considered green and efficient electrochemical energy devices and both include reduction of oxygen at cathode during the working of device. Due to the sluggish reaction kinetics of ORR, it is considered the performance limiting factor and to cope with this issue scientists are trying to introduce low cost, highly durable and efficient electrocatalyst for cathode reaction. After the synthesis of catalyst material, different electrochemical techniques including Steady-state polarization, Cyclic voltammetry, Rotating disk electrode and Rotating ring disk electrode are used to check the performance and durability of ORR catalysts. In PEMFCs, water should be produced along with some heat by the 4-electron transfer reaction between oxygen, protons and the electrons. The reported ORR catalysts can be classified as platinum group metal catalyst, platinum group metal free catalyst and metal free catalysts. All the catalysts have their own pros and cons, while platinum supported carbon (Pt/C) is considered the state-of-the-art catalyst for both fuel cell and metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289

    Article  CAS  Google Scholar 

  2. Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer

    Google Scholar 

  3. Radin MD, Siegel DJ (2015) In: Rechargeable batteries. Springer, pp 511–539

    Google Scholar 

  4. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182

    Article  CAS  Google Scholar 

  5. Hou X et al (2018) Low-cost nickel phosphide as an efficient bifunctional cathode catalyst for Li-O2 batteries. J Electrochem Soc 165:A2904–A2908

    Article  CAS  Google Scholar 

  6. Garden A, Abghoui Y, Skúlason E (2018) In: Alternative catalytic materials, pp 133–163

    Google Scholar 

  7. Mustain WE, Prakash J (2007) Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media. J Power Sources 170:28–37

    Article  CAS  Google Scholar 

  8. Wang Y, Balbuena PB (2004) Roles of proton and electric field in the electroreduction of O2 on Pt (111) surfaces: results of an ab-initio molecular dynamics study. J Phys Chem B 108:4376–4384

    Article  CAS  Google Scholar 

  9. Sidik RA, Anderson AB (2002) Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J Electroanal Chem 528:69–76

    Article  CAS  Google Scholar 

  10. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  11. Damjanovic A (1993) Temperature dependence of symmetry factors and the significance of experimental activation energies. J Electroanal Chem 355:57–77

    Article  CAS  Google Scholar 

  12. Song C et al (2007) PEM fuel cell reaction kinetics in the temperature range of 23–120 °C. Electrochim Acta 52:2552–2561

    Article  CAS  Google Scholar 

  13. Zhang J et al (2008) PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures. Electrochim Acta 53:5315–5321

    Article  CAS  Google Scholar 

  14. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation. J Electrochem Soc 139:2530–2537

    Article  CAS  Google Scholar 

  15. Savy M, Andro P, Bernard C, Magner G (1973) Etude de la reduction de l’oxygene sur les phtalocyanines monomeres et polymeres—I. Principes fondamentaux, choix de l’ion central. Electrochimica Acta 18:191–197

    Google Scholar 

  16. Stassi A et al (2006) Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt–M supported catalysts. J Appl Electrochem 36:1143–1149

    Article  CAS  Google Scholar 

  17. Nie M, Shen PK, Wu M, Wei Z, Meng H (2006) A study of oxygen reduction on improved Pt-WC/C electrocatalysts. J Power Sources 162:173–176

    Article  CAS  Google Scholar 

  18. González-Huerta R, Chávez-Carvayar J, Solorza-Feria O (2006) Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell. J Power Sources 153:11–17

    Article  CAS  Google Scholar 

  19. Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N (2006) Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 8:1487–1491

    Article  CAS  Google Scholar 

  20. Wakabayashi N, Takeichi M, Itagaki M, Uchida H, Watanabe M (2005) Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J Electroanal Chem 574:339–346

    Article  CAS  Google Scholar 

  21. Xia L et al (2018) Investigation of parameter effects on the performance of high-temperature PEM fuel cell. Int J Hydrogen Energy 43:23441–23449

    Article  CAS  Google Scholar 

  22. Lee K et al (2009) Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochim Acta 54:4704–4711

    Article  CAS  Google Scholar 

  23. Denuault G, Sosna M, Williams K-J (2007) In: Handbook of electrochemistry. Elsevier, pp 431–469

    Google Scholar 

  24. Paliteiro C, Hamnett A, Goodenough JB (1987) The electroreduction of oxygen on pyrolytic graphite. J Electroanal Chem Interfacial Electrochem 233:147–159

    Article  CAS  Google Scholar 

  25. Beyer W, von Sturm F (1972) Polarographic reduction of oxygen in the presence of phthalocyanine complexes. Angew Chem Int Ed Engl 11:140–141

    Article  CAS  Google Scholar 

  26. Ocampo A, Castellanos R, Sebastian P (2002) Kinetic study of the oxygen reduction reaction on Ruy(CO)n in acid medium with different concentrations of methanol. J New Mater Electrochem Syst 5:163–168

    CAS  Google Scholar 

  27. Antoine O, Durand R (2000) RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions. J Appl Electrochem 30:839–844

    Article  CAS  Google Scholar 

  28. Yuan X, Ding X-L, Wang C-Y, Ma Z-F (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6:1105–1124

    Article  CAS  Google Scholar 

  29. Xing W, Yin G, Zhang J (2014) Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier

    Google Scholar 

  30. Vellacheri R, Unni SM, Nahire S, Kharul UK, Kurungot S (2010) Pt–MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature Polymer Electrolyte Membrane Fuel Cell applications. Electrochim Acta 55:2878–2887

    Article  CAS  Google Scholar 

  31. Salvatore Aricò A et al (2010) Surface properties of Pt and PtCo electrocatalysts and their influence on the performance and degradation of high-temperature polymer electrolyte fuel cells. J Phys Chem C 114:15823–15836

    Google Scholar 

  32. You DJ et al (2012) Improvement of activity for oxygen reduction reaction by decoration of Ir on PdCu/C catalyst. Catal Today 185:138–142

    Article  CAS  Google Scholar 

  33. Stassi A et al (2012) The effect of thermal treatment on structure and surface composition of PtCo electro-catalysts for application in PEMFCs operating under automotive conditions. J Power Sources 208:35–45

    Article  CAS  Google Scholar 

  34. Sepp S et al (2016) Performance of polymer electrolyte membrane fuel cell single cells prepared using hierarchical microporous-mesoporous carbon supported Pt nanoparticles activated catalysts. Electrochim Acta 203:221–229

    Article  CAS  Google Scholar 

  35. Jaouen F, Dodelet J-P (2007) Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochim Acta 52:5975–5984

    Article  CAS  Google Scholar 

  36. Yang Z, Moriguchi I, Nakashima N (2015) Durable Pt electrocatalyst supported on a 3D nanoporous carbon shows high performance in a high-temperature polymer electrolyte fuel cell. ACS Appl Mater Interfaces 7:9800–9806

    Article  CAS  Google Scholar 

  37. Gribov E, Kuznetsov A, Golovin V, Krasnikov D, Kuznetsov V (2019) Effect of modification of multi-walled carbon nanotubes with nitrogen-containing polymers on the electrochemical performance of Pt/CNT catalysts in PEMFC. Mater Renew Sustain Energy 8:7

    Article  Google Scholar 

  38. Yang Z, Nakashima N (2015) Poly (vinylpyrrolidone)-wrapped carbon nanotube-based fuel cell electrocatalyst shows high durability and performance under non-humidified operation. J Mater Chem A 3:23316–23322

    Article  CAS  Google Scholar 

  39. Yang Z, Fujigaya T, Nakashima N (2015) A phosphoric acid-doped electrocatalyst supported on poly (para-pyridine benzimidazole)-wrapped carbon nanotubes shows a high durability and performance. J Mater Chem A 3:14318–14324

    Article  CAS  Google Scholar 

  40. Fujigaya T, Berber MR, Nakashima N (2014) Design of highly durable electrocatalyst for high-temperature polymer electrolyte fuel cell. ECS Trans 64:159–169

    Article  CAS  Google Scholar 

  41. Kim D et al (2018) Highly graphitic mesoporous Fe, N-doped carbon materials for oxygen reduction electrochemical catalysts. ACS Appl Mater Interfaces 10:25337–25349

    Article  CAS  Google Scholar 

  42. Hu Y et al (2018) Immunity of the Fe-NC catalysts to electrolyte adsorption: phosphate but not perchloric anions. Appl Catal B 234:357–364

    Article  CAS  Google Scholar 

  43. Liu K et al (2019) Mn- and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl Catal B 243:195–203

    Article  CAS  Google Scholar 

  44. Jiang R et al (2018) Ordered mesoporous FeNx-doped carbon: a class of highly active and stable catalysts in acids, bases and polymer electrolyte membrane fuel cells. J Mater Chem A 6:3941–3953

    Article  CAS  Google Scholar 

  45. Gokhale R et al (2018) Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells. Electrochem Commun 93:91–94

    Article  CAS  Google Scholar 

  46. Khan K et al (2018) Facile synthesis of tin-doped mayenite electride composite as a non-noble metal durable electrocatalyst for oxygen reduction reaction (ORR). Dalton Trans 47:13498–13506

    Article  CAS  Google Scholar 

  47. Vengatesan S, Cho E, Oh I-H (2012) Development of non-precious oxygen reduction reaction catalyst for polymer electrolyte membrane fuel cells based on substituted cobalt porphyrins. Korean J Chem Eng 29:621–626

    Article  CAS  Google Scholar 

  48. Li X, Liu L, Lee J-W, Popov BN (2008) Development of tellurium-modified carbon catalysts for oxygen reduction reaction in PEM fuel cells. J Power Sources 182:18–23

    Article  CAS  Google Scholar 

  49. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. J Power Sources 183:34–42

    Article  CAS  Google Scholar 

  50. Singh SK, Takeyasu K, Nakamura J (2019) Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater 31:1804297

    Article  CAS  Google Scholar 

  51. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5–25

    Article  CAS  Google Scholar 

  52. Komba N, Wei Q, Zhang G, Rosei F, Sun S (2019) Controlled synthesis of graphene via electrochemical route and its use as efficient metal-free catalyst for oxygen reduction. Appl Catal B 243:373–380

    Article  CAS  Google Scholar 

  53. Xu J, Huang W, McCreery RL (1996) Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. J Electroanal Chem 410:235–242

    Article  Google Scholar 

  54. Appleby A, Marie J (1979) Kinetics of oxygen reduction on carbon materials in alkaline solution. Electrochim Acta 24:195–202

    Article  CAS  Google Scholar 

  55. Cao P et al (2019) Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ ZIF-8 single crystals for enhanced oxygen reduction reaction. Catal Today 327:366–373

    Article  CAS  Google Scholar 

  56. Li Y, Wen H, Yang J, Zhou Y, Cheng X (2019) Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitutions of catalytic active sites. Carbon 142:1–12

    Article  CAS  Google Scholar 

  57. Lv Y, Yang L, Cao D (2019) Sulfur, nitrogen and fluorine triple-doped metal-free carbon electrocatalysts for the oxygen reduction reaction. ChemElectroChem 6:741–747

    Article  CAS  Google Scholar 

  58. Zhou Z, Chen A, Fan X, Kong A, Shan Y (2019) Hierarchical porous NP-coupled carbons as metal-free bifunctional electro-catalysts for oxygen conversion. Appl Surf Sci 464:380–387

    Article  CAS  Google Scholar 

  59. Cazetta AL et al (2019) Metal-free ovalbumin-derived NS-co-doped nanoporous carbon materials as efficient electrocatalysts for oxygen reduction reaction. Appl Surf Sci 467:75–83

    Article  CAS  Google Scholar 

  60. Lin X, Peng P, Guo J, Xiang Z (2019) Reaction milling for scalable synthesis of N, P-codoped covalent organic polymers for metal-free bifunctional electrocatalysts. Chem Eng J 358:427–434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Haider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, R., Yuan, X., Bilal, M. (2020). Oxygen Reduction Reaction. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_15

Download citation

Publish with us

Policies and ethics