Skip to main content

Earth Abundant Electrocatalyst

  • Chapter
  • First Online:
Book cover Methods for Electrocatalysis

Abstract

Altering/replacing the rare elements and noble metal like platinum (Pt), iridium (Ir) and ruthenium (Ru) with the earth abundant materials towards the energy devices have extended a lot of attention for the improvement of efficient electrocatalyst. In this chapter, we have focused on the earth abundant electrocatalysts primarily used for overall water splitting, oxygen reduction reaction (ORR) in fuel cells, O2C reduction, N2 reduction and detection of pollutants in water samples. The problem related to the non-noble metals electrocatalysts are their poor electrocatalytic activity, restricted active sites and also small mass transport properties. However, recent studies show that earth abundant materials can be a suitable/efficient candidate for these applications with optimized composition and nano-scale particle size, which will definitely accelerate their catalytic activity. In this chapter, we have focused on all these aspects of earth abundant electrocatalysts (EAEs) and discussed their future perspectives also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas MA, Bang JH (2015) Rising again: opportunities and challenges for platinum-free electrocatalysts. Chem Mater 27(21):7218–7235

    Article  CAS  Google Scholar 

  2. Abdullah MI, Hameed A, Zhang N, Ma M (2019) Nickel doped cobalt-hollow nanoparticles as an efficient electrocatalyst for hydrogen evolution from neutral water. Int J Hydrog Energy

    Google Scholar 

  3. Akbar K, Jeon JH, Kim M, Jeong J, Yi Y, Chun SH (2018) Bifunctional electrodeposited 3D NiCoSe2/nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustain Chem Eng 6(6):7735–7742

    Article  CAS  Google Scholar 

  4. Ali Y, Nguyen VT, Nguyen NA, Shin S, Choi HS (2019) Transition-metal-based NiCoS/C-dot nanoflower as a stable electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 44(16):8214–8222

    Article  CAS  Google Scholar 

  5. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658

    Article  CAS  Google Scholar 

  6. Babar PT, Lokhande AC, Gang MG, Pawar BS, Pawar SM, Kim JH (2018) Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application. J Ind Eng Chem 60:493–497

    Article  CAS  Google Scholar 

  7. Bai L, Wen X, Guan J (2019) Amorphous FeCoNi oxide for oxygen evolution reaction. Mater Today Energy 12:311–317

    Article  Google Scholar 

  8. Balasubramanian P, Balamurugan TST, Chen SM, Chen TW (2019) Simplistic synthesis of ultrafine CoMnO3 nanosheets: an excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples. J Hazard Mater 361:123–133

    Article  CAS  Google Scholar 

  9. Bayatsarmadi B, Zheng Y, Russo V, Ge L, Casari CS, Qiao SZ (2016) Highly active nickel–cobalt/nanocarbon thin films as efficient water splitting electrodes. Nanoscale 8(43):18507–18515

    Article  CAS  Google Scholar 

  10. Cai C, Mi Y, Han S, Wang Q, Liu W, Wu X, Zheng Z, Xia X, Qiao L, Zhou W, Zu X (2019) Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochim Acta 295:92–98

    Article  CAS  Google Scholar 

  11. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27(10):3769–3774

    Article  CAS  Google Scholar 

  12. Cao J, Zhou J, Zhang Y, Wang Y, Liu X (2018) Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl Mater Interfaces 10(2):1752–1760

    Article  CAS  Google Scholar 

  13. Cao N, Zheng G (2018) Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res 11(6):2992–3008

    Article  CAS  Google Scholar 

  14. Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G (2017) Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew Chem Int Ed 56(10):2699–2703

    Article  CAS  Google Scholar 

  15. Chen Z, Higgins D, Chen Z (2010) Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48(11):3057–3065

    Article  CAS  Google Scholar 

  16. Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L (2016) International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016)). USDOE Energy Information Administration (EIA), Washington, DC, USA. Office of Energy Analysis

    Google Scholar 

  17. Cui H, Guo Y, Guo L, Wang L, Zhou Z, Peng Z (2018) Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J Mater Chem A 6(39):18782–18793

    Article  CAS  Google Scholar 

  18. Doan-Nguyen VV, Zhang S, Trigg EB, Agarwal R, Li J, Su D, Winey KI, Murray CB (2015) Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano 9(8):8108–8115

    Article  CAS  Google Scholar 

  19. Dong Y, Hu M, Zhang Z, Zapien JA, Wang X, Lee JM (2018) Hierarchical self-assembled Bi 2 S 3 hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale 10(28):13343–13350

    Article  CAS  Google Scholar 

  20. Dong Y, Yang S, Zhang Z, Lee JM, Zapien JA (2018) Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale 10(7):3159–3165

    Article  CAS  Google Scholar 

  21. Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C 118(37):21347–21356

    Article  CAS  Google Scholar 

  22. Fu G, Lee JM (2019) Ternary metal sulfides for electrocatalytic energy conversion. J Mater Chem A 7(16):9386–9405

    Article  CAS  Google Scholar 

  23. Fu G, Jiang X, Chen Y, Xu L, Sun D, Lee JM, Tang Y (2018) Robust bifunctional oxygen electrocatalyst with a “rigid and flexible” structure for air-cathodes. NPG Asia Mater 10(7):618

    Article  CAS  Google Scholar 

  24. Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y (2018) Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv Mater 30(5):1704609

    Article  CAS  Google Scholar 

  25. Gong Y, Pan H, Xu Z, Yang Z, Lin Y, Wang J (2018) Crossed FeCo2S4 nanosheet arrays grown on 3D nickel foam as high-efficient electrocatalyst for overall water splitting. Int J Hydrogen Energy 43(36):17259–17264

    Article  CAS  Google Scholar 

  26. Grubb WT, Niedrach LW (1960) Batteries with Solid Ion-exchange membrane electrolytes II. Low-temperature hydrogen-oxygen fuel cells. J Electrochem Soc 107(2):131–135

    Article  CAS  Google Scholar 

  27. Grubb WT (1959) Batteries with solid ion exchange electrolytes I. Secondary cells employing metal electrodes. J Electrochem Soc 106(4):275–278

    Article  CAS  Google Scholar 

  28. Guo P, Wu YX, Lau WM, Liu H, Liu LM (2017) CoS nanosheet arrays grown on nickel foam as an excellent OER catalyst. J Alloy Compd 723:772–778

    Article  CAS  Google Scholar 

  29. He C, Bo T, Wang B, Tao J (2019) RGO induced one-dimensional bimetallic carbide nanorods: an efficient and pH-universal hydrogen evolution reaction electrocatalyst. Nano Energy

    Google Scholar 

  30. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8(5):1404–1427

    Article  CAS  Google Scholar 

  31. Hou W, He J, Yu B, Lu Y, Zhang W, Chen Y (2018) One-pot synthesis of graphene-wrapped NiSe2Ni0.85Se hollow microspheres as superior and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 291:242–248

    Article  CAS  Google Scholar 

  32. Hu J, Ou Y, Li Y, Gao D, Zhang Y, Xiao P (2018) FeCo2S4 nanosheet arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for overall water-splitting. ACS Sustain Chem Eng 6(9):11724–11733

    Article  CAS  Google Scholar 

  33. Hu XM, Hval HH, Bjerglund ET, Dalgaard KJ, Madsen MR, Pohl MM, Welter E, Lamagni P, Buhl KB, Bremholm M, Beller M (2018) Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal 8(7):6255–6264

    Article  CAS  Google Scholar 

  34. Jayabal S, Saranya G, Wu J, Liu Y, Geng D, Meng X (2017) Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 5(47):24540–24563

    Article  CAS  Google Scholar 

  35. Jia F, Yu X, Zhang L (2014) Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J Power Sources 252:85–89

    Article  CAS  Google Scholar 

  36. Jiang D, Xu Y, Yang R, Li D, Meng S, Chen M (2019) CoP3/CoMoP heterogeneous nanosheet arrays as robust electrocatalyst for pH-universal hydrogen evolution reaction. ACS Sustain Chem Eng

    Google Scholar 

  37. Jiang N, You B, Sheng M, Sun Y (2016) Bifunctionality and mechanism of electrodeposited nickel–phosphorous films for efficient overall water splitting. ChemCatChem 8(1):106–112

    Article  CAS  Google Scholar 

  38. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086

    Article  CAS  Google Scholar 

  39. Kargar A, Yavuz S, Kim TK, Liu CH, Kuru C, Rustomji CS, Jin S, Bandaru PR (2015) Solution-processed CoFe2O4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction. ACS Appl Mater Interfaces 7(32):17851–17856

    Article  CAS  Google Scholar 

  40. Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53(52):14433–14437

    Article  CAS  Google Scholar 

  41. Kim K, Lee N, Yoo CY, Kim JN, Yoon HC, Han JI (2016) Communication—electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J Electrochem Soc 163(7):F610–F612

    Article  CAS  Google Scholar 

  42. Kim K, Yoo CY, Kim JN, Yoon HC, Han JI (2016) Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J Electrochem Soc 163(14):F1523–F1526

    Article  CAS  Google Scholar 

  43. Kulkarni P, Nataraj SK, Balakrishna RG, Nagaraju DH, Reddy MV (2017) Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A 5(42):22040–22094

    Article  CAS  Google Scholar 

  44. Lee J, Jeong B, Ocon JD (2013) Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys 13(2):309–321

    Article  Google Scholar 

  45. Li A, Sun Y, Yao T, Han H (2018) Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen. Chem A Eur J 24(69):18334–18355

    Article  CAS  Google Scholar 

  46. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Norskov JK (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15(1):48

    Article  CAS  Google Scholar 

  47. Li J, Hong W, Jian C, Cai Q, Liu W (2019) Seamless tungsten disulfide-tungsten heterojunction with abundant exposed active sites for efficient hydrogen evolution. Appl Catal B 244:320–326

    Article  CAS  Google Scholar 

  48. Li L, Wang Y, Vanka S, Mu X, Mi Z, Li CJ (2017) Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity. Angew Chem Int Ed 56(30):8701–8705

    Article  CAS  Google Scholar 

  49. Li J, Chen M, Cullen DA, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C (2018) Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 1(12):935

    Article  CAS  Google Scholar 

  50. Liang Y, Liu Q, Luo Y, Sun X, He Y, Asiri AM (2016) Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochim Acta 190:360–364

    Article  CAS  Google Scholar 

  51. Lin X, Zhou J, Zheng D, Guan C, Xiao G, Chen N, Liu Q, Bao H, Wang JQ (2019) Rational synthesis of CaCo2O4 nanoplate as an earth-abundant electrocatalyst for oxygen evolution reaction. J Energy Chem 31:125–131

    Article  Google Scholar 

  52. Liu P, Ali RN, Li J, Hu G, Zhu X, Lu Y, Xiang B (2019) Self-reconstruction in 2D nickel thiophosphate nanosheets to boost oxygen evolution reaction. Appl Surf Sci 484:54–61

    Article  CAS  Google Scholar 

  53. Liu PF, Yang S, Zhang B, Yang HG (2016) Defect-rich ultrathin cobalt–iron layered double hydroxide for electrochemical overall water splitting. ACS Appl Mater Interfaces 8(50):34474–34481

    Article  CAS  Google Scholar 

  54. Liu Z, Yuan C, Teng F (2019) Crystal facets-predominated oxygen evolution reaction activity of earth abundant CoMoO4 electrocatalyst. J Alloy Compd 781:460–466

    Article  CAS  Google Scholar 

  55. Lu Y, Hou W, Yang D, Chen Y (2019) CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim Acta 307:543–552

    Article  CAS  Google Scholar 

  56. Lubitz W, Tumas W (2007) Hydrogen: an overview

    Google Scholar 

  57. Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S (2014) Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci 7(8):2608–2613

    Article  CAS  Google Scholar 

  58. Ma Z, Dou S, Shen A, Tao L, Dai L, Wang S (2015) Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 54(6):1888–1892

    Article  CAS  Google Scholar 

  59. Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325

    Article  CAS  Google Scholar 

  60. Marje SJ, Katkar PK, Kale SB, Lokhande AC, Lokhande CD, Patil UM (2019) Effect of phosphate variation on morphology and electrocatalytic activity (OER) of hydrous nickel pyrophosphate thin films. J Alloy Compd 779:49–58

    Article  CAS  Google Scholar 

  61. Masud J, Nath M (2016) Co7Se8 nanostructures as catalysts for oxygen reduction reaction with high methanol tolerance. ACS Energy Lett 1(1):27–31

    Article  CAS  Google Scholar 

  62. McKone JR, Lewis NS, Gray HB (2013) Will solar-driven water-splitting devices see the light of day? Chem Mater 26(1):407–414

    Article  CAS  Google Scholar 

  63. Nsanzimana JMV, Peng Y, Xu YY, Thia L, Wang C, Xia BY, Wang X (2018) An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv Energy Mater 8(1):1701475

    Article  CAS  Google Scholar 

  64. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270

    Article  CAS  Google Scholar 

  65. Qi F, Wang X, Zheng B, Chen Y, Yu B, Zhou J, He J, Li P, Zhang W, Li Y (2017) Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 224:593–599

    Article  CAS  Google Scholar 

  66. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3):1259–1278

    Article  CAS  Google Scholar 

  67. Russell JH, Nuttall LJ, Fickett AP (1973) Hydrogen generation by solid polymer electrolyte water electrolysis. Am Chem Soc Div Fuel Chem Prepr 18:24–40

    CAS  Google Scholar 

  68. Schreier M, Heroguel F, Steier L, Ahmad S, Luterbacher JS, Mayer MT, Luo J, Gratzel M (2017) Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy 2(7):17087

    Article  CAS  Google Scholar 

  69. Shahid MM, Rameshkumar P, Huang NM (2015) Morphology dependent electrocatalytic properties of hydrothermally synthesized cobalt oxide nanostructures. Ceram Int 41(10):13210–13217

    Article  CAS  Google Scholar 

  70. Shipman MA, Symes MD (2017) Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today 286:57–68

    Article  CAS  Google Scholar 

  71. Sivanantham A, Ganesan P, Shanmugam S (2016) Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Func Mater 26(26):4661–4672

    Article  CAS  Google Scholar 

  72. Song B, Li K, Yin Y, Wu T, Dang L, Cabaan-Acevedo M, Han J, Gao T, Wang X, Zhang Z, Schmidt JR (2017) Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal 7(12):8549–8557

    Article  CAS  Google Scholar 

  73. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM (2017) Energy and fuels from electrochemical interfaces. Nat Mater 16(1):57

    Article  CAS  Google Scholar 

  74. Tang Y, Fang X, Zhang X, Fernandes G, Yan Y, Yan D, Xiang X, He J (2017) Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Appl Mater Interfaces 9(42):36762–36771

    Article  CAS  Google Scholar 

  75. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590

    Article  CAS  Google Scholar 

  76. Tran DT, Le HT, Kim NH, Lee JH (2019) Hierarchically porous nickel-cobalt phosphide nanoneedle arrays loaded micro-carbon spheres as an advanced electrocatalyst for overall water splitting application. Appl Catal B Environ

    Google Scholar 

  77. Tran PD, Nguyen M, Pramana SS, Bhattacharjee A, Chiam SY, Fize J, Field MJ, Artero V, Wong LH, Loo J, Barber J (2012) Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy Environ Sci 5(10):8912–8916

    Article  CAS  Google Scholar 

  78. Wang Q, Lei Y, Wang D, Li Y (2019) Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci

    Google Scholar 

  79. Wu J, Wang Q, Umar A, Sun S, Huang L, Wang J, Gao Y (2014) Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes. New J Chem 38(9):4420–4426

    Article  CAS  Google Scholar 

  80. Wu T, Stone ML, Shearer MJ, Stolt MJ, Guzei IA, Hamers RJ, Lu R, Deng K, Jin S, Schmidt JR (2018) Crystallographic facet dependence of the hydrogen evolution reaction on CoPS: theory and experiments. ACS Catal 8(2):1143–1152

    Article  CAS  Google Scholar 

  81. Wu Y, Gao Y, He H, Zhang P (2019) Novel electrocatalyst of nickel sulfide boron coating for hydrogen evolution reaction in alkaline solution. Appl Surf Sci

    Google Scholar 

  82. Wu Z, Li X, Liu W, Zhong Y, Gan Q, Li X, Wang H (2017) Materials chemistry of iron phosphosulfide nanoparticles: synthesis, solid state chemistry, surface structure, and electrocatalysis for the hydrogen evolution reaction. ACS Catal 7(6):4026–4032

    Article  CAS  Google Scholar 

  83. Xia B, Yan Y, Wang X, Lou XWD (2014) Recent progress on graphene-based hybrid electrocatalysts. Mater Horiz 1(4):379–399

    Article  CAS  Google Scholar 

  84. Xiang K, Guo J, Xu J, Qu T, Zhang Y, Chen S, Hao P, Li M, Xie M, Guo X, Ding W (2018) Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis. ACS Appl Energy Mater 1(8):4040–4049

    Article  CAS  Google Scholar 

  85. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7(8):2624–2629

    Article  CAS  Google Scholar 

  86. Xing X, Liu R, Cao K, Kaiser U, Zhang G, Streb C (2018) Manganese vanadium oxide–N-doped reduced graphene oxide composites as oxygen reduction and oxygen evolution electrocatalysts. ACS Appl Mater Interfaces 10(51):44511–44517

    Article  CAS  Google Scholar 

  87. Xu Y, Xie L, Li D, Yang R, Jiang D, Chen M (2018) Engineering Ni(OH)2 nanosheet on CoMoO4 nanoplate array as efficient electrocatalyst for oxygen evolution reaction. ACS Sustain Chem Eng 6(12):16086–16095

    Article  CAS  Google Scholar 

  88. Xue S, Wang W, Song J, Tao P, Wang P, Lei Z (2018) Facile fabricate stable rare-earth bimetallic carbide as electrocatalyst for active oxygen reduction reaction. J Taiwan Inst Chem Eng 84:93–100

    Article  CAS  Google Scholar 

  89. Yang L, Zeng L, Liu H, Deng Y, Zhou Z, Yu J, Liu H, Zhou W (2019) Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Appl Catal B 249:98–105

    Article  CAS  Google Scholar 

  90. Yu B, Hu Y, Qi F, Wang X, Zheng B, Liu K, Zhang W, Li Y, Chen Y (2017) Nanocrystalline Ni0.85Se as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Electrochim Acta 242:25–30

    Article  CAS  Google Scholar 

  91. Yu B, Qi F, Zheng B, Zhou J, Chen Y (2018) One-pot synthesis of self-assembled coral-like hierarchical architecture constructed by polymorphic CoSe2 nanocrystals as superior electrocatalyst for hydrogen evolution reaction. Electrochim Acta 277:161–167

    Article  CAS  Google Scholar 

  92. Yu L, Pan X, Cao X, Hu P, Bao X (2011) Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal 282(1):183–190

    Article  CAS  Google Scholar 

  93. Yu L, Xia BY, Wang X, Lou XW (2016) General formation of M-MoS3 (M=Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv Mater 28(1):92–97

    Article  CAS  Google Scholar 

  94. Zhang C, Hao R, Liao H, Hou Y (2013) Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2(1):88–97

    Article  CAS  Google Scholar 

  95. Zhang H, Li Y, Xu T, Wang J, Huo Z, Wan P, Sun X (2015) Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J Mater Chem A 3(29):15020–15023

    Article  CAS  Google Scholar 

  96. Zhang H, Yang B, Wu X, Li Z, Lei L, Zhang X (2015) Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 7(3):1772–1779

    Article  CAS  Google Scholar 

  97. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115(22):11170–11176

    Article  CAS  Google Scholar 

  98. Zhang M, Gao J, Hong W, Wang X, Tian Q, An Z, Wang L, Yao H, Liu Y, Zhao X, Qiu H (2019) Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. J Colloid Interface Sci 537:238–246

    Article  CAS  Google Scholar 

  99. Zhang X, Si C, Guo X, Kong R, Qu F (2017) A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. J Mater Chem A 5(33):17211–17215

    Article  CAS  Google Scholar 

  100. Zhang Y, Zhou Q, Zhu J, Yan Q, Dou SX, Sun W (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27(35):1702317

    Article  CAS  Google Scholar 

  101. Zhao J, Chen Z (2015) Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Phys Chem C 119(47):26348–26354

    Article  CAS  Google Scholar 

  102. Zhou H, Yu F, Liu Y, Sun J, Zhu Z, He R, Bao J, Goddard WA, Chen S, Ren Z (2017) Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy Environ Sci 10(6):1487–1492

    Article  CAS  Google Scholar 

  103. Zinola CF, Martins ME, Tejera EP, Neves NP (2012) Electrocatalysis: fundamentals and applications. Int J Electrochem 2012

    Google Scholar 

  104. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180

    Article  CAS  Google Scholar 

  105. Zuo Z, Fu Y, Manthiram A (2012) Novel blend membranes based on acid-base interactions for fuel cells. Polymers 4(4):1627–1644

    Article  CAS  Google Scholar 

Download references

Author Declaration

Mr. Majhi has given the major contribution in writing this book chapter along with drawing the Figures and Tables, taking the copyright permission etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartick Chandra Majhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majhi, K.C., Karfa, P., Madhuri, R. (2020). Earth Abundant Electrocatalyst. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_1

Download citation

Publish with us

Policies and ethics