Skip to main content

The Impact of Formulation on the Rheological, Tribological, and Microstructural Properties of Acid Milk Gels

  • Chapter
  • First Online:
Rheology of Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

Reduction or removal of fat in semisolid foods can negatively affect their textural properties. Also, incorporation of human whole saliva (HWS) with food in the mouth can alter the texture characteristics of foods. Hydrocolloids can be used to improve the texture of reduced or non-fat semisolid foods through different mechanisms, including altering the interaction of food components with saliva compounds. Thus, the objective of this study was to determine the effects of HWS and hydrocolloids on rheological, tribological and microstructural behaviors of acid milk gels, a model system for yogurts. 24 acid milk gels were prepared using skim milk, cream, and hydrocolloids (locust bean gum, cellulose gum, corn starch, potato starch, whey protein isolate, and skim milk powder). Standard rheological analyses were carried out for all samples with or without HWS at 8 °C and 25 °C. Tribometry was done at only 25 °C with and without HWS. Samples were also imaged by confocal laser scanning microscopy. Overall, viscosity and viscoelastic moduli (G and G′′) decreased when samples were mixed with HWS and tested at 25 °C, but the specific effects were dependent on the type of hydrocolloids used. Friction coefficient decreased with addition of HWS. Addition of hydrocolloids resulted in protein aggregates with thicker chains and clusters, particularly when starch with larger granules was combined with an anionic hydrocolloid. More aggregation and open pores in the acid milk gel protein matrix microstructures were linked to higher viscosity and higher friction. These results improve the understanding of how hydrocolloid selection and HWS impact acid milk gel microstructures, rheological behaviors, and textures; they can be used to design palatable reduced-fat semisolid products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alakali, J., Okonkwo, T., & Iordye, E. (2008). Effect of stabilizers on the physico-chemical and sensory attributes of thermized yoghurt. African Journal of Biotechnology, 7(2).

    Google Scholar 

  • Andiç, S., Boran, G., & Tunçtürk, Y. (2013). Effects of carboxyl methyl cellulose and edible cow gelatin on physico-chemical, textural and sensory properties of yoghurt. International Journal of Agriculture & Biology, 15(2).

    Google Scholar 

  • Andrewes, P., Kelly, M., Vardhanabhuti, B., & Foegeding, E. (2011). Dynamic modelling of whey protein–saliva interactions in the mouth and relation to astringency in acidic beverages. International Dairy Journal, 21(8), 523–530.

    Article  CAS  Google Scholar 

  • Berk, Z. (2018). Food process engineering. 3rd edition. Academic Press: Cambridge, MA. 742 p.

    Google Scholar 

  • Bird, A. R., Brown, I. L., & Topping, D. L. (2000). Starches, resistant starches, the gut microflora and human health. Current Issues in Intestinal Microbiology, 1(1), 25–37.

    CAS  PubMed  Google Scholar 

  • Bongaerts, J., Fourtouni, K., & Stokes, J. (2007a). Soft-tribology: Lubrication in a compliant PDMS–PDMS contact. Tribology International, 40(10), 1531–1542.

    Article  CAS  Google Scholar 

  • Bongaerts, J., Rossetti, D., & Stokes, J. (2007b). The lubricating properties of human whole saliva. Tribology Letters, 27(3), 277–287.

    Article  CAS  Google Scholar 

  • Bourbon, A., Pinheiro, A., Ribeiro, C., Miranda, C., Maia, J., Teixeira, J., & Vicente, A. (2010). Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: Comparison with guar gum and locust bean gum. Food Hydrocolloids, 24(2–3), 184–192.

    Article  CAS  Google Scholar 

  • Cassin, G., Heinrich, E., & Spikes, H. (2001). The influence of surface roughness on the lubrication properties of adsorbing and non-adsorbing biopolymers. Tribology Letters, 11(2), 95–102.

    Article  CAS  Google Scholar 

  • Chen, J. (2015). Food oral processing: Mechanisms and implications of food oral destruction. Trends in Food Science & Technology, 45(2), 222–228.

    Article  CAS  Google Scholar 

  • Chen, J., & Engelen, L. (2012). Food oral processing: Fundamentals of eating and sensory perception. John Wiley & Sons: Ames, IA. 320 p.

    Google Scholar 

  • Cho, S. S., & Prosky, L. (1999). Application of complex carbohydrates to food product fat mimetics. In Food science and technology (pp. 411–430). New York: Marcel Dekker.

    Google Scholar 

  • Chojnicka, A., de Jong, S., de Kruif, C. G., & Visschers, R. W. (2008). Lubrication properties of protein aggregate dispersions in a soft contact. Journal of Agricultural and Food Chemistry, 56(4), 1274–1282.

    Article  CAS  PubMed  Google Scholar 

  • Chojnicka, A., Sala, G., De Kruif, C. G., & Van de Velde, F. (2009). The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocolloids, 23(3), 1038–1046.

    Article  CAS  Google Scholar 

  • Chojnicka-Paszun, A., De Jongh, H., & De Kruif, C. (2012). Sensory perception and lubrication properties of milk: Influence of fat content. International Dairy Journal, 26(1), 15–22.

    Article  Google Scholar 

  • Chojnicka-Paszun, A., Doussinault, S., & De Jongh, H. (2014). Sensorial analysis of polysaccharide–gelled protein particle dispersions in relation to lubrication and viscosity properties. Food Research International, 56, 199–210.

    Article  CAS  Google Scholar 

  • Chojnicka-Paszun, A., Janssen, A. M., van de Pijpekamp, A. M., Doussinault, S., & Sala, G. (2009). Sensorial analysis of polysaccharide-protein gel particle dispersions in relation to lubrication and viscosity properties. Tribology and sensory attributes of food dispersions. Ph.D. dissertation. Wageningen University.

    Google Scholar 

  • De Vicente, J., Stokes, J., & Spikes, H. (2006). Soft lubrication of model hydrocolloids. Food Hydrocolloids, 20(4), 483–491.

    Article  CAS  Google Scholar 

  • de Wijk, R. A., & Prinz, J. F. (2005). The role of friction in perceived oral texture. Food Quality and Preference, 16(2), 121–129.

    Article  Google Scholar 

  • De Wijk, R. A., & Prinz, J. F. (2006). Mechanisms underlying the role of friction in oral texture. Journal of Texture Studies, 37(4), 413–427.

    Article  Google Scholar 

  • Dresselhuis, D., De Hoog, E., Stuart, M. C., & Van Aken, G., (2007). Tribology as a tool to study emulsion behaviour in the mouth. E. Dickinson & M. E. Leser (Eds.), In Food colloids (pp. 451–461), Royal Society of Chemistry: Cambirdge, UK.

    Google Scholar 

  • Engelen, L., de Wijk, R. A., van der Bilt, A., Prinz, J. F., Janssen, A. M., & Bosman, F. (2005). Relating particles and texture perception. Physiology & Behavior, 86(1), 111–117.

    Article  CAS  Google Scholar 

  • Engelen, L., van den Keybus, P. A., de Wijk, R. A., Veerman, E. C., Amerongen, A. V. N., Bosman, F., Prinz, J. F., & van der Bilt, A. (2007). The effect of saliva composition on texture perception of semi-solids. Archives of Oral Biology, 52(6), 518–525.

    Article  CAS  PubMed  Google Scholar 

  • Everett, D. W., & McLeod, R. E. (2005). Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. International Dairy Journal, 15(11), 1175–1183.

    Article  CAS  Google Scholar 

  • Huc, D., Michon, C., Bedoussac, C., & Bosc, V. (2016). Design of a multi-scale texture study of yoghurts using rheology, and tribology mimicking the eating process and microstructure characterisation. International Dairy Journal, 61, 126–134.

    Article  Google Scholar 

  • Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: Normal composition, flow, and function. The Journal of Prosthetic Dentistry, 85(2), 162–169.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, A. M., Terpstra, M. E., De Wijk, R. A., & Prinz, J. F. (2007). Relations between rheological properties, saliva-induced structure breakdown and sensory texture attributes of custards. Journal of Texture Studies, 38(1), 42–69.

    Article  Google Scholar 

  • Johnson, S., Gorman, D., Adams, M., & Briscoe, B. (1993). The friction and lubrication of human stratum corneum. Tribology series, 25, 663–672.

    Google Scholar 

  • Laneuville, S., Paquin, P., & Turgeon, S. (2000). Effect of preparation conditions on the characteristics of whey protein—Xanthan gum complexes. Food Hydrocolloids, 14(4), 305–314.

    Article  CAS  Google Scholar 

  • Lee, W., & Lucey, J. (2010). Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136.

    CAS  Google Scholar 

  • Li, J.-Y., & Yeh, A.-I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50(3), 141–148.

    Article  Google Scholar 

  • Lucey, J., & Singh, H. (1997). Formation and physical properties of acid milk gels: A review. Food Research International, 30(7), 529–542.

    CAS  Google Scholar 

  • Lucey, J., Van Vliet, T., Grolle, K., Geurts, T., & Walstra, P. (1997). Properties of acid casein gels made by acidification with glucono-δ-lactone. 1. Rheological properties. International Dairy Journal, 7(6–7), 381–388.

    Article  CAS  Google Scholar 

  • Malone, M., Appelqvist, I., & Norton, I. (2003). Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocolloids, 17(6), 763–773.

    CAS  Google Scholar 

  • Mezger, T. (2011). The rheology handbook, (p. 432, 3rd revise). Vincentz Network, Hanover.

    Google Scholar 

  • Milani, J., & Maleki, G. (2012). Hydrocolloids in food industry. In Food industrial processes-methods and equipment. Rejika: InTech.

    Google Scholar 

  • Miller, J. L., & Watkin, K. L. (1996). The influence of bolus volume and viscosity on anterior lingual force during the oral stage of swallowing. Dysphagia, 11(2), 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Morell, P., Chen, J., & Fiszman, S. (2016). The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts. Food & Function, 8, 545–553.

    Article  CAS  Google Scholar 

  • Morris, E. R., Cutler, A., Ross-Murphy, S., Rees, D., & Price, J. (1981). Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers, 1(1), 5–21.

    Article  CAS  Google Scholar 

  • Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. The Journal of Biological Chemistry, 153(2), 375–380.

    CAS  Google Scholar 

  • Nguyen, P. T., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids, 72, 90–104.

    Article  CAS  Google Scholar 

  • Official Methods of Analysis of AOAC INTERNATIONAL (1995a). AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 989.05

    Google Scholar 

  • Official Methods of Analysis of AOAC INTERNATIONAL (1995b). AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 923.03

    Google Scholar 

  • Official Methods of Analysis of AOAC INTERNATIONAL (1999). AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 934.01

    Google Scholar 

  • Ognean, C. F., Darie, N., & Ognean, M. (2006). Fat replacers: Review. Journal of Agroalimentary Processes and Technologies, 12(2), 433–442.

    CAS  Google Scholar 

  • Oh, H., Anema, S., Wong, M., Pinder, D., & Hemar, Y. (2007). Effect of potato starch addition on the acid gelation of milk. International Dairy Journal, 17(7), 808–815.

    Article  CAS  Google Scholar 

  • Peng, X., & Yao, Y. (2017). Carbohydrates as fat replacers. Annual Review of Food Science and Technology, 8, 331–351.

    Article  CAS  PubMed  Google Scholar 

  • Perrechil, F., Braga, A., & Cunha, R. (2009). Interactions between sodium caseinate and LBG in acidified systems: Rheology and phase behavior. Food Hydrocolloids, 23(8), 2085–2093.

    Article  CAS  Google Scholar 

  • Prakash, S., Tan, D. D. Y., & Chen, J. (2013). Applications of tribology in studying food oral processing and texture perception. Food Research International, 54(2), 1627–1635.

    Article  Google Scholar 

  • Selway, N., & Stokes, J. R. (2013). Insights into the dynamics of oral lubrication and mouthfeel using soft tribology: Differentiating semi-fluid foods with similar rheology. Food Research International, 54(1), 423–431.

    Article  Google Scholar 

  • Shao, Y., & Lin, A. H.-M. (2018). Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chemistry, 240, 898–903.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231.

    CAS  Google Scholar 

  • Sonne, A., Busch-Stockfisch, M., Weiss, J., & Hinrichs, J. (2014). Improved mapping of in-mouth creaminess of semi-solid dairy products by combining rheology, particle size, and tribology data. LWT - Food Science and Technology, 59(1), 342–347.

    Article  CAS  Google Scholar 

  • Stading, M., & Hermansson, A.-M. (1990). Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids, 4(2), 121–135.

    Article  CAS  Google Scholar 

  • Stanley, N., & Taylor, L. (1993). Rheological basis of oral characteristics of fluid and semi-solid foods: A review. Acta Psychologica, 84(1), 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Steffe, J. F. (1996). Rheological methods in food process engineering. East Lansing: Freeman Press.

    Google Scholar 

  • Tang, C.-H., & Liu, F. (2013). Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocolloids, 30(1), 61–72.

    Article  CAS  Google Scholar 

  • Thaiudom, S., & Goff, H. (2003). Effect of κ-carrageenan on milk protein polysaccharide mixtures. International Dairy Journal, 13(9), 763–771.

    Article  CAS  Google Scholar 

  • Tunick, M. H. (2010). Small-strain dynamic rheology of food protein networks. Journal of Agricultural and Food Chemistry, 59(5), 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  • Vingerhoeds, M. H., Silletti, E., De Groot, J., Schipper, R. G., & Van Aken, G. A. (2009). Relating the effect of saliva-induced emulsion flocculation on rheological properties and retention on the tongue surface with sensory perception. Food Hydrocolloids, 23(3), 773–785.

    Article  CAS  Google Scholar 

  • Zinoviadou, K., Janssen, A., & De Jongh, H. (2008). Tribological properties of neutral polysaccharide solutions under simulated oral conditions. Journal of Food Science, 73(2), E88–E94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the USDA National Institute of Food and Agriculture (grant #2015–67,018-23,069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen S. Joyner .

Editor information

Editors and Affiliations

Appendices

Appendix A: Supplemental Figures

Fig. 6
figure 6figure 6figure 6figure 6

Acid milk gel shear rate sweep results; (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4; (e) sample 5; (f) sample 6; (g) sample 7; (h) sample 8; (i) sample 9; (j) sample10; (k) sample 11; (l) sample 12; (m) sample 13; (n) sample 14; (o) sample 15; (p) sample 16; (q) sample 17; (r) sample 18; (s) sample 19; (t) sample 20; (u) sample 21; (v) sample 22; (w) sample 23; (x) sample 24

Fig. 7
figure 7figure 7figure 7figure 7

Acid milk gel strain sweep results; (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4; (e) sample 5; (f) sample 6; (g) sample 7; (h) sample 8; (i) sample 9; (j) sample10; (k) sample 11; (l) sample 12; (m) sample 13; (n) sample 14; (o) sample 15; (p) sample 16; (q) sample 17; (r) sample 18; (s) sample 19; (t) sample 20; (u) sample 21; (v) sample 22; (w) sample 23; (x) sample 24

Fig. 8
figure 8figure 8figure 8

Acid milk gel frequency sweep results; (a) sample 2; (b) sample 3; (c) sample 5; (d) sample 7; (e) sample 9; (f) sample 10; (g) sample 18; (h) sample 11; (i) sample 12; (j) sample13; (k) sample 15; (l) sample 17; (m) sample 23; (n) sample 19; (o) sample 20; (p) sample 21; (q) sample 22; (r) sample 24

Fig. 9
figure 9figure 9

Acid milk gel tribological results; (a) sample 2; (b) sample 3; (c) sample 5; (d) sample 6; (e) sample 9; (f) sample 10; (g) sample 11; (h) sample 12; (i) sample 13; (j) sample14; (k) sample 15; (l) sample 17; (m) sample 18; (n) sample 19; (o) sample 20; (p) sample 21; (q) sample 24; (r) sample 23

Appendix B: Supplemental Tables

Table 11 HWS compositiona

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baniasadidehkordi, M., Joyner, H.S. (2019). The Impact of Formulation on the Rheological, Tribological, and Microstructural Properties of Acid Milk Gels. In: Joyner, H. (eds) Rheology of Semisolid Foods. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-27134-3_10

Download citation

Publish with us

Policies and ethics