Skip to main content

Introduction: Measuring Rheological Properties of Foods

  • Chapter
  • First Online:
Rheology of Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

The science used for qualitatively and quantitatively describing materials’ deformation and flow behaviors is called rheology. In rheological terms, food materials may be characterized as viscous, viscoelastic and elastic materials. Rheological measurements of foods can be conducted in rotational or oscillatory modes, and provide valuable information about food flow and viscoelastic behaviors. They can also be used to evaluate food behaviors over a range of temperatures, time scales, and shear conditions. Accordingly, food rheological properties have gained significant interest from the food manufacturing industry. Rheological techniques are often used as an essential tool in process engineering in manufacturing plants and in quality control of food products. This is because food rheological properties can determine the following: (1) the processability of food materials in the manufacturing pipeline, (2) the stability of manufactured liquid and semisolid food products under different storage conditions, (3) the sensory texture and mouthfeel attributes of processed foods, and (4) the ability of food components to be digested and absorbed in the human gastrointestinal tract. For instance, using rheological techniques and knowledge, one can predict the flow behavior of a given raw food material in a dedicated processing line after running a limited number of trials or suggest reasonable modifications of a processing line when a new material candidate is going to be processed, therefore reducing processing risks such as blockage of pipeline. Additionally, the quantitative measures of rheological properties associated with food mechanical responses to a deformation or torque can be highly correlated with sensory textural attributes, particularly for fluid foods. Therefore, in-depth explorations of food rheological properties open a pathway for food scientists to express sensory behaviors using objective instrumental data and allows prediction of panel sensory results or consumer acceptance using statistical models based on multiple correlated rheological measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso, I. M., Hes, L., Maia, J. M., & Melo, L. F. (2003). Heat transfer and rheology of stirred yoghurt during cooling in plate heat exchangers. Journal of Food Engineering, 57(2), 179–187.

    Article  Google Scholar 

  • Atsuko Igarashi, Maiko Kawasaki, Shu-ichi Nomura, Yuji Sakai, Mayumi Ueno, Ichiro Ashida, Yozo Miyaoka, (2010) Sensory and Motor Responses of Normal Young Adults During Swallowing of Foods with Different Properties and Volumes. Dysphagia 25 (3):198-206

    Google Scholar 

  • Alting, A. C., Hamer, R. J., de Kruif, C. G., & Visschers, R. W. (2000). Formation of disulfide bonds in acid-induced gels of preheated whey protein isolate. Journal of Agricultural and Food Chemistry, 48(10), 5001–5007.

    Article  CAS  PubMed  Google Scholar 

  • Anema, S. G. (2010). Effect of pH at pressure treatment on the acid gelation of skim milk. Innovative Food Science & Emerging Technologies, 11(2), 265–273.

    Article  CAS  Google Scholar 

  • BarbĂ©, F., MĂ©nard, O., Le Gouar, Y., Buffière, C., Famelart, M.-H., Laroche, B., Le Feunteun, S., Dupont, D., & RĂ©mond, D. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 136(3), 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  • Basim Abu-Jdayil. (2003). Modelling the time-dependent rheological behavior of semisolid foodstuffs. Journal of Food Engineering, 57(1):97–102.

    Article  Google Scholar 

  • Belmar-Beiny, M. T., Gotham, S. M., Paterson, W. R., Fryer, P. J., & Pritchard, A. M. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering, 19(2), 119–139.

    Article  Google Scholar 

  • Bornhorst, G. M., & Singh, R. P. (2014). Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annual Review of Food Science and Technology, 5(1), 111–132.

    Article  CAS  PubMed  Google Scholar 

  • Bowland, E. L., & Foegeding, E. A. (2001). Small strain oscillatory shear and microstructural analyses of a model processed cheese. Journal of Dairy Science, 84(11), 2372–2380.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, J., Parkinson, C., & Sherman, P. (1972). Factors affecting emulsion stability, and the HLB concept. Journal of Colloid and Interface Science, 41(2), 359–370.

    Article  CAS  Google Scholar 

  • Butler, F., & O’Donnell, H. J. (1999). Modelling the flow of a time-dependent viscous product (cultured buttermilk) in a tube viscometer at 5°C. Journal of Food Engineering, 42(4), 199–206.

    Article  Google Scholar 

  • Chakrabandhu, K., & Singh, R. K. (2005). Rheological properties of coarse food suspensions in tube flow at high temperatures. Journal of Food Engineering, 66(1), 117–128.

    Article  Google Scholar 

  • Chen, J., & Stokes, J. R. (2012). Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science & Technology, 25(1), 4–12.

    Article  CAS  Google Scholar 

  • Chiang, B. H., & Cheryan, M. (1986). Ultrafiltration of skimmilk in hollow fibers. Journal of Food Science, 51(2), 340–344.

    Article  Google Scholar 

  • Chung, C., Degner, B., & McClements, D. J. (2013). Designing reduced-fat food emulsions: Locust bean gum–fat droplet interactions. Food Hydrocolloids, 32(2), 263–270.

    Article  CAS  Google Scholar 

  • Chung, C., & McClements, D. J. (2014). Structure–function relationships in food emulsions: Improving food quality and sensory perception. Food Structure, 1(2), 106–126.

    Article  Google Scholar 

  • Coviello, T., & Burchard, W. (1992). Criteria for the point of gelation in reversibly gelling systems according to dynamic light scattering and oscillatory rheology. Macromolecules, 25(2), 1011–1012.

    Article  CAS  Google Scholar 

  • Derkatch, S. R., Levachov, S. M., Kuhkushkina, A. N., Novosyolova, N. V., Kharlov, A. E., & Matveenko, V. N. (2007). Rheological properties of concentrated emulsions stabilized by globular protein in the presence of nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 225–234.

    Article  CAS  Google Scholar 

  • Dervisoglu, M., & Kokini, J. L. (1986). Steady shear rheology and fluid mechanics of four semi-solid foods. Journal of Food Science, 51(3), 541–546.

    Article  Google Scholar 

  • Dickinson, E. (1993). Emulsion stability. In K. Nishinari & E. Doi (Eds.), Food hydrocolloids: Structures, properties, and functions (pp. 387–398). Boston, MA: Springer US.

    Google Scholar 

  • Dickinson, E. (1998). Structure, stability and rheology of flocculated emulsions. Current Opinion in Colloid & Interface Science, 3(6), 633–638.

    Article  CAS  Google Scholar 

  • Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids and Surfaces B: Biointerfaces, 20(3), 197–210.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, E., & Golding, M. (1997). Depletion flocculation of emulsions containing unadsorbed sodium caseinate. Food Hydrocolloids, 11(1), 13–18.

    Article  CAS  Google Scholar 

  • Dickinson, E., Hunt, J. A., & Horne, D. S. (1992). Calcium induced flocculation of emulsions containing adsorbed β-casein or phosvitin. Food Hydrocolloids, 6(4), 359–370.

    Article  CAS  Google Scholar 

  • Dolz, M., Hernández, M. J., Delegido, J., Alfaro, M. C., & Muñoz, J. (2007). Influence of xanthan gum and locust bean gum upon flow and thixotropic behaviour of food emulsions containing modified starch. Journal of Food Engineering, 81(1), 179–186.

    Article  Google Scholar 

  • Dolz, M., Hernández, M. J., Pellicer, J., & Delegido, J. (1995). Shear stress synergism index and relative thixotropic area. Journal of Pharmaceutical Sciences, 84(6), 728–732.

    Article  CAS  PubMed  Google Scholar 

  • Doublier, J.-L., & Durand, S. (2008). A rheological characterization of semi-solid dairy systems. Food Chemistry, 108(4), 1169–1175.

    Article  CAS  Google Scholar 

  • Edwards, D. A., & Wasan, D. T. (1991). A micromechanical model of linear surface rheological behavior. Chemical Engineering Science, 46(5), 1247–1257.

    Article  CAS  Google Scholar 

  • Egelandsdal, B., Fretheim, K., & Harbitz, O. (1986). Dynamic rheological measurements on heat-induced myosin gels: An evaluation of the method’s suitability for the filamentous gels. Journal of the Science of Food and Agriculture, 37(9), 944–954.

    Article  CAS  Google Scholar 

  • Elmanan, M., Al-Assaf, S., Phillips, G. O., & Williams, P. A. (2008). Studies on Acacia exudate gums: Part VI. Interfacial rheology of Acacia senegal and Acacia seyal. Food Hydrocolloids, 22(4), 682–689.

    Article  CAS  Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2010). Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Journal of Food Science, 75(7), R151–R162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foegeding, A., Brown, J., Drake, M., & Daubert, C. R. (2003). Sensory and mechanical aspects of cheese texture. International Dairy Journal, 13(8), 585–591.

    Article  Google Scholar 

  • Foegeding, A., & Drake, M. A. (2007). Invited review: Sensory and mechanical properties of cheese texture. Journal of Dairy Science, 90(4), 1611–1624.

    Article  CAS  PubMed  Google Scholar 

  • Frøst, M. B., & Janhøj, T. (2007). Understanding creaminess. International Dairy Journal, 17(11), 1298–1311.

    Article  CAS  Google Scholar 

  • Gajo, A. A., de Resende, J. V., Costa, F. F., Pereira, C. G., de Lima, R. R., Antonialli, F., & de Abreu, L. R. (2017). Effect of hydrocolloids blends on frozen dessert “popsicles” made with whey concentrated. LWT - Food Science and Technology, 75, 473–480.

    Article  CAS  Google Scholar 

  • Gogate, P. R. (2011). Hydrodynamic cavitation for food and water processing. Food and Bioprocess Technology, 4(6), 996–1011.

    Article  Google Scholar 

  • Gonçalves, B. J., Pereira, C. G., Lago, A. M. T., Gonçalves, C. S., Giarola, T. M. O., Abreu, L. R., & Resende, J. V. (2017). Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products. Journal of Dairy Science, 100(5), 3513–3525.

    Article  PubMed  CAS  Google Scholar 

  • Hemar, Y., & Horne, D. S. (2000). Dynamic rheological properties of highly concentrated protein-stabilized emulsions. Langmuir, 16(7), 3050–3057.

    Article  CAS  Google Scholar 

  • Hughes, T. J. R. (2012). The finite element method: Linear static and dynamic finite element analysis. Dover Publications, INC. Mineola, New York.

    Google Scholar 

  • Janssen, A. M., Terpstra, M. E. J., De Wijk, R. A., & Prinz, J. F. (2007). Relations between rheological properties, saliva-induced structure breakdown and sensory texture attributes of custards. Journal of Texture Studies, 38(1), 42–69.

    Article  Google Scholar 

  • Javanmard, M., Wong, E., Howes, T., & Stokes, J. R. (2018). Application of the thixotropic elasto-viscoplastic model as a structure probing technique for acid milk gel suspensions. Journal of Food Engineering, 222, 250–257.

    Article  CAS  Google Scholar 

  • Joyner, H. S. (2018). Explaining food texture through rheology. Current Opinion in Food Science, 21, 7–14.

    Article  Google Scholar 

  • Karaman, S., Yilmaz, M. T., Toker, O. S., & Dogan, M. (2016). Stress relaxation/creep compliance behaviour of kashar cheese: Scanning electron microscopy observations. International Journal of Dairy Technology, 69(2), 254–261.

    Article  CAS  Google Scholar 

  • Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterisation of semi-solid foods. Food Research International, 39(3), 265–276.

    Article  CAS  Google Scholar 

  • Keogh, M. K., & O’Kennedy, B. T. (1998). Rheology of stirred yogurt as affected by added milk fat, protein and hydrocolloids. Journal of Food Science, 63(1), 108–112.

    Article  CAS  Google Scholar 

  • Kilcast, D., & Clegg, S. (2002). Sensory perception of creaminess and its relationship with food structure. Food Quality and Preference, 13(7), 609–623.

    Article  Google Scholar 

  • Kokini, J. L. (1987). The physical basis of liquid food texture and texture-taste interactions. Journal of Food Engineering, 6(1), 51–81.

    Article  Google Scholar 

  • Kokini, J. L., & Cussler, E. L. (1983). Predicting the texture of liquid and melting semi-solid foods. Journal of Food Science, 48(4), 1221–1225.

    Article  Google Scholar 

  • Langevin, D. (2000). Influence of interfacial rheology on foam and emulsion properties. Advances in Colloid and Interface Science, 88(1), 209–222.

    Article  CAS  PubMed  Google Scholar 

  • Levinson, Y., Ish-Shalom, S., Segal, E., & Livney, Y. D. (2016). Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD3 encapsulated in re-assembled casein micelles. Food & Function, 7(3), 1477–1482.

    Article  CAS  Google Scholar 

  • Lobato-Calleros, C., RamĂ­rez-Santiago, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. Journal of Food Engineering, 131, 110–115.

    Article  CAS  Google Scholar 

  • Lucey, J. A. (2001). The relationship between rheological parameters and whey separation in milk gels. Food Hydrocolloids, 15(4), 603–608.

    Article  CAS  Google Scholar 

  • Lucey, J. A. (2002). Formation and physical properties of milk protein gels. Journal of Dairy Science, 85(2), 281–294.

    Article  CAS  PubMed  Google Scholar 

  • Lucey, J. A., & Singh, H. (1997). Formation and physical properties of acid milk gels: A review. Food Research International, 30(7), 529–542.

    Article  CAS  Google Scholar 

  • Mackie, A., Bajka, B., & Rigby, N. (2016). Roles for dietary fibre in the upper GI tract: The importance of viscosity. Food Research International, 88, 234–238.

    Article  CAS  Google Scholar 

  • Mackie, A. R., Ridout, M. J., Moates, G., Husband, F. A., & Wilde, P. J. (2007). Effect of the interfacial layer composition on the properties of emulsion creams. Journal of Agricultural and Food Chemistry, 55(14), 5611–5619.

    Article  CAS  PubMed  Google Scholar 

  • Maher, P. G., Fenelon, M. A., Zhou, Y., Kamrul Haque, M., & Roos, Y. H. (2011). Optimization of β-casein stabilized nanoemulsions using experimental mixture design. Journal of Food Science, 76(8), C1108–C1117.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Valderrama, J., & Patino, J. M. R. (2010). Interfacial rheology of protein–surfactant mixtures. Current Opinion in Colloid & Interface Science, 15(4), 271–282.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47(7), 611–649.

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2008). Designing food structure to control stability, digestion, release and absorption of lipophilic food components. Food Biophysics, 3(2), 219–228.

    Article  Google Scholar 

  • Mezger, T. G. (2014). The rheology handbook: For users of rotational and oscillatory rheometers. Vincentz Network, Hanover, Germany.

    Google Scholar 

  • Morell, P., Fiszman, S. M., Varela, P., & Hernando, I. (2014). Hydrocolloids for enhancing satiety: Relating oral digestion to rheology, structure and sensory perception. Food Hydrocolloids, 41, 343–353.

    Article  CAS  Google Scholar 

  • Morris, E. (1986). Molecular origin of hydrocolloid functionality. In G. O. Phillips, D. J. Wedlock, & P. A. Williams (Eds.), Gums and stabilisers for the food industry. London: Elsevier Applied Science.

    Google Scholar 

  • Muliawan, E. B., & Hatzikiriakos, S. G. (2008). Rheology of mozzarella cheese: Extrusion and rolling. International Dairy Journal, 18(6), 615–623.

    Article  Google Scholar 

  • Murray, B. S. (2002). Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid & Interface Science, 7(5), 426–431.

    Article  CAS  Google Scholar 

  • Nakauma, M., Ishihara, S., Funami, T., & Nishinari, K. (2011). Swallowing profiles of food polysaccharide solutions with different flow behaviors. Food Hydrocolloids, 25(5), 1165–1173.

    Article  CAS  Google Scholar 

  • Nindo, C. I., Tang, J., Powers, J. R., & Takhar, P. S. (2007). Rheological properties of blueberry puree for processing applications. LWT - Food Science and Technology, 40(2), 292–299.

    Article  CAS  Google Scholar 

  • Pascua, Y., Koç, H., & Foegeding, E. A. (2013). Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Current Opinion in Colloid & Interface Science, 18(4), 324–333.

    Article  CAS  Google Scholar 

  • Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food & Function, 5(11), 2833–2841.

    Article  CAS  Google Scholar 

  • Pereira, R. B., Bennett, R. J., Hemar, Y., & Campanella, O. H. (2001). Rheological and microstructural characteristics of model processed cheese analogues. Journal of Texture Studies, 32(5–6), 349–373.

    Article  Google Scholar 

  • Piska, I., & Ĺ tÄ›tina, J. (2004). Influence of cheese ripening and rate of cooling of the processed cheese mixture on rheological properties of processed cheese. Journal of Food Engineering, 61(4), 551–555.

    Article  Google Scholar 

  • Pradal, C., & Stokes, J. R. (2016). Oral tribology: Bridging the gap between physical measurements and sensory experience. Current Opinion in Food Science, 9, 34–41.

    Article  Google Scholar 

  • Prakash, S., Ma, Q., & Bhandari, B. (2014). Rheological behaviour of selected commercially available baby formulas in simulated human digestive system. Food Research International, 64, 889–895.

    Article  CAS  PubMed  Google Scholar 

  • Pralle, A., Keller, P., Florin, E. L., Simons, K., & Horber, J. K. (2000). Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. The Journal of Cell Biology, 148, 997–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptaszek, A. (2010). Rheological equation of state for shear-thickening food systems. Journal of Food Engineering, 100(2), 322–328.

    Article  Google Scholar 

  • Puri, V. M., & Anantheswaran, R. C. (1993). The finite-element method in food processing: A review. Journal of Food Engineering, 19(3), 247–274.

    Article  Google Scholar 

  • Ramaswamy, H. S., & Basak, S. (1991). Rheology of stirred yogurts. Journal of Texture Studies, 22(2), 231–241.

    Article  Google Scholar 

  • Rao, M. A. (1977). Measurement of flow properties of fluid foods - developments, limitations, and interpretation of phenomena. Journal of Texture Studies, 8(3), 257–282.

    Article  Google Scholar 

  • Rao, M. A., Okechukwu, P. E., Da Silva, P. M. S., & Oliveira, J. C. (1997). Rheological behavior of heated starch dispersions in excess water: Role of starch granule. Carbohydrate Polymers, 33(4), 273–283.

    Article  CAS  Google Scholar 

  • Rok, K., Michael, G., Ana, G., & Saša, N. (2017). Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomedical Materials, 12(2), 025004

    Google Scholar 

  • Richardson-Harman, N. J., Stevens, R., Walker, S., Gamble, J., Miller, M., Wong, M., & McPherson, A. (2000). Mapping consumer perceptions of creaminess and liking for liquid dairy products. Food Quality and Preference, 11(3), 239–246.

    Article  Google Scholar 

  • Ring, S. G., & Stainsby, G. (1985). A simple method for determining the shear modulus of food dispersions and gels. Journal of the Science of Food and Agriculture, 36(7), 607–613.

    Article  Google Scholar 

  • Rousseau, D. (2000). Fat crystals and emulsion stability — A review. Food Research International, 33(1), 3–14.

    Article  CAS  Google Scholar 

  • Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research, 36(10), 1797–1806.

    Article  CAS  Google Scholar 

  • Rozzi, S., Massini, R., Paciello, G., Pagliarini, G., Rainieri, S., & Trifirò, A. (2007). Heat treatment of fluid foods in a shell and tube heat exchanger: Comparison between smooth and helically corrugated wall tubes. Journal of Food Engineering, 79(1), 249–254.

    Article  Google Scholar 

  • Sablani, S. S., & Shayya, W. H. (2003). Neural network based non-iterative calculation of the friction factor for power law fluids. Journal of Food Engineering, 57(4), 327–335.

    Article  Google Scholar 

  • Santos, J., Calero, N., Guerrero, A., & Muñoz, J. (2015). Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocolloids, 44, 109–114.

    Article  CAS  Google Scholar 

  • Schmitt, L., Ghnassia, G., Bimbenet, J. J., & Cuvelier, G. (1998). Flow properties of stirred yogurt: Calculation of the pressure drop for a thixotropic fluid. Journal of Food Engineering, 37(4), 367–388.

    Article  Google Scholar 

  • Selway, N., & Stokes, J. R. (2013). Insights into the dynamics of oral lubrication and mouthfeel using soft tribology: Differentiating semi-fluid foods with similar rheology. Food Research International, 54(1), 423–431.

    Article  Google Scholar 

  • Shaker, R. R., Jumah, R. Y., & Abu-Jdayil, B. (2000). Rheological properties of plain yogurt during coagulation process: Impact of fat content and preheat treatment of milk. Journal of Food Engineering, 44(3), 175–180.

    Article  Google Scholar 

  • Sharma, P., Munro, P. A., Gillies, G., Wiles, P. G., & Dessev, T. T. (2017). Changes in creep behavior and microstructure of model Mozzarella cheese during working. LWT - Food Science and Technology, 83, 184–192.

    Article  CAS  Google Scholar 

  • Shelat, K. J., Vilaplana, F., Nicholson, T. M., Gidley, M. J., & Gilbert, R. G. (2011). Diffusion and rheology characteristics of barley mixed linkage β-glucan and possible implications for digestion. Carbohydrate Polymers, 86(4), 1732–1738.

    Article  CAS  Google Scholar 

  • Sherman, P. (1969). A texture profile of foodstuffs based upon well-defined rheological properties. Journal of Food Science, 34(5), 458–462.

    Article  Google Scholar 

  • Shimada, K., & Cheftel, J. C. (1989). Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. Journal of Agricultural and Food Chemistry, 37(1), 161–168.

    Article  CAS  Google Scholar 

  • Singh, H., Ye, A., & Horne, D. (2009). Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progress in Lipid Research, 48(2), 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Soukoulis, C., Lyroni, E., & Tzia, C. (2010). Sensory profiling and hedonic judgement of probiotic ice cream as a function of hydrocolloids, yogurt and milk fat content. LWT - Food Science and Technology, 43(9), 1351–1358.

    Article  CAS  Google Scholar 

  • Stading, M., & Hermansson, A.-M. (1990). Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids, 4(2), 121–135.

    Article  CAS  Google Scholar 

  • Ĺ tern P., PokornĂ˝ J., Ĺ edivá A., Z. Panovská Z. (2008). Rheological and sensory characteristics of yoghurt-modified mayonnaise. Czech Journal of Food Sciences 26 (No. 3):190–198.

    Article  Google Scholar 

  • Stokes, J. R., & Telford, J. H. (2004). Measuring the yield behaviour of structured fluids. Journal of Non-Newtonian Fluid Mechanics, 124(1), 137–146.

    Article  CAS  Google Scholar 

  • Svegmark, K., & Hermansson, A.-M. (1991). Changes induced by shear and gel formation in the viscoelastic behaviour of potato, wheat and maize starch dispersions. Carbohydrate Polymers, 15(2), 151–169.

    Article  CAS  Google Scholar 

  • SzabĂł, B., Szabo, B. A., & Babuška, I. (1991). Finite element analysis. New York: Wiley.

    Google Scholar 

  • Tadros, T. F. (1993). Industrial applications of dispersions. Advances in Colloid and Interface Science, 46, 1–47.

    Article  CAS  Google Scholar 

  • Tadros, T. F. (2004). Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science, 108-109, 227–258.

    Article  CAS  PubMed  Google Scholar 

  • Tadros, T. F. (2012). Dispersion of powders in liquids and stabilization of suspensions. Weinheim: Wiley.

    Book  Google Scholar 

  • Taherian, A. R., Fustier, P., Britten, M., & Ramaswamy, H. S. (2008). Rheology and stability of beverage emulsions in the presence and absence of weighting agents: A review. Food Biophysics, 3(3), 279–286.

    Article  Google Scholar 

  • Tárrega, A., Durán, L., & Costell, E. (2004). Flow behaviour of semi-solid dairy desserts. Effect of temperature. International Dairy Journal, 14(4), 345–353.

    Article  Google Scholar 

  • Thakur, R. K., Vial, Ch., Djelveh, G. (2008). Effect of composition and process parameters on elasticity and solidity of foamed food. Chemical Engineering and Processing: Process Intensification, 47(3):474–483.

    Article  CAS  Google Scholar 

  • Tripathi, A., Whittingstall, P., & McKinley, G. H. (2000). Using filament stretching rheometry to predict strand formation and “processability” in adhesives and other non-Newtonian fluids. Rheologica Acta, 39(4), 321–337.

    Article  CAS  Google Scholar 

  • Tunick, M. H. (2000). Rheology of dairy foods that gel, stretch, and fracture. Journal of Dairy Science, 83(8), 1892–1898.

    Article  CAS  PubMed  Google Scholar 

  • Tunick, M. H. (2011). Small-strain dynamic rheology of food protein networks. Journal of Agricultural and Food Chemistry, 59(5), 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  • van Aken, G. A. (2010). Modelling texture perception by soft epithelial surfaces. Soft Matter, 6(5), 826–834.

    Article  CAS  Google Scholar 

  • van Vliet, T., van Dijk, H. J. M., Zoon, P., & Walstra, P. (1991). Relation between syneresis and rheological properties of particle gels. Colloid and Polymer Science, 269(6), 620–627.

    Article  Google Scholar 

  • VĂ©lez-Ruiz, J. F., & Barbosa-Cánovas, G. V. (1998). Rheological properties of concentrated milk as a function of concentration, temperature and storage time. Journal of Food Engineering, 35(2), 177–190.

    Article  Google Scholar 

  • Verheul, M., Roefs, S. P. F. M., Mellema, J., & de Kruif, K. G. (1998). Power law behavior of structural properties of protein gels. Langmuir, 14(9), 2263–2268.

    Article  CAS  Google Scholar 

  • Wendt, J. F. (2008). Computational fluid dynamics: An introduction. Berlin Heidelberg: Springer.

    Google Scholar 

  • Wilkinson, C., Dijksterhuis, G. B., & Minekus, M. (2000). From food structure to texture. Trends in Food Science & Technology, 11(12), 442–450.

    Article  CAS  Google Scholar 

  • Wium, H., Qvist, K. B., & Gross, M. (1997). Uniaxial compression of uf-feta cheese related to sensory texture analysis. Journal of Texture Studies, 28(4), 455–476.

    Article  Google Scholar 

  • Wu, B.-C., Degner, B., & McClements, D. J. (2013). Creation of reduced fat foods: Influence of calcium-induced droplet aggregation on microstructure and rheology of mixed food dispersions. Food Chemistry, 141(4), 3393–3401.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Q., Kuang, W., Fang, M., Sun-Waterhouse, D., Liu, T., Long, Z., & Zhao, M. (2015). Frozen, chilled and spray dried emulsions for whipped cream: Influence of emulsion preservation approaches on product functionality. LWT - Food Science and Technology, 62(1, Part 1), 287–293.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haotian Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, H. (2019). Introduction: Measuring Rheological Properties of Foods. In: Joyner, H. (eds) Rheology of Semisolid Foods. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-27134-3_1

Download citation

Publish with us

Policies and ethics