Skip to main content

Linearization of Nonlinear Functions

  • Chapter
  • First Online:
Methods and Models in Mathematical Programming
  • 777 Accesses

Abstract

Many optimization models describing real-life problems may include nonlinear terms in their objective function and constraints. Practically, it is often preferred to rewrite a nonlinear model in the form of an equivalent linear formulation or to obtain an appropriate linear approximation. Thus, in this chapter, we introduce some nonlinear functions that frequently appear in optimization problems and discuss how they can be represented in the form of linear functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertsimas D, Tsitsiklis JN. Introduction to linear optimization. Athena Scientific;Belmont, MA 1997.

    Google Scholar 

  • Boukouvala F, Misener R, Floudas CF. Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur J Oper Res 2016;252(3):701–727.

    Article  MathSciNet  Google Scholar 

  • Bradley SP, Hax AC, Magnanti TL. Applied mathematical programming. Addison-Wesley;Reading, MA 1977.

    Google Scholar 

  • Castillo E, Gonejo AJ, Pedregal P, Garcia R, Alguacil N. Building and solving mathematical programming models in engineering and science. Wiley; Hoboken, NJ 2002.

    MATH  Google Scholar 

  • Croxton KL, Gendron B, Magnanti TL. A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manag Sci 2003;49(9):1121–1273.

    Article  Google Scholar 

  • Glover F, Woolsey E. Converting the 0-1 polynomial programming problem to a 0-1 linear program. Oper Res 1974;22(1):180–182.

    Article  Google Scholar 

  • Hock W, Schittkowski K. Test examples for nonlinear programming codes - all problems from the Hock-Schittkowski-collection -.Berlin Springer; 2009.

    Google Scholar 

  • Jamil M, Yang XS. A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 2013;4(2):150–194.

    MATH  Google Scholar 

  • Kellerer H, Pferschy U, Pisinger D. Knapsack problems. Springer;Berlin 2004.

    Book  Google Scholar 

  • Martello S, Toth P. Knapsack problems: algorithms and computer implementations. Wiley;Chichester 1990.

    MATH  Google Scholar 

  • Nagarajan H, Lu M, Yamangil E, Bent R. Tightening McCormick relaxations for nonlinear programs via dynamic multivariate partitioning arXiv:1606.05806; 2016.

    Google Scholar 

  • Pisinger D. Algorithms for Knapsack problems. Denmark: Ph.D. Thesis University of Copenhagen; 1995.

    Google Scholar 

  • Plastria F. Formulating logical implications in combinatorial optimisation. Eur J Oper Res 2002;140:338–353.

    Article  MathSciNet  Google Scholar 

  • Ram B, Karwan MH, Babu AJG. Aggregation of constraints in integer programming. Eur J Oper Res 1988;35:216–228.

    Article  MathSciNet  Google Scholar 

  • Rao SS. Optimization theory and applications.New Delhi : New Age International 1978.

    Google Scholar 

  • Speakman E, Lee J. Quantifying double McCormick. Math Oper Res https://doi.org/10.1287/moor.2017.0846.42, 897-1312 2017.

    Article  MathSciNet  MATH  Google Scholar 

  • Stancu-Minasian IM. On the transportation problem with multiple objective functions. Bulletin mathématique de la Société des Sciences Mathématiques de la 1978;22(3):315–328.

    MathSciNet  MATH  Google Scholar 

  • Stancu-Minasian IM. Fractional programming: theory, methods, and applications. Springer;Dordrecht 1997.

    Book  Google Scholar 

  • Taha HA. Integer programming: theory, applications, and computations. Academic;Cambridge, MA 1975.

    MATH  Google Scholar 

  • Teles JP, Castro PM, Matos HA. Global optimization of water networks design using multiparametric disaggregation. Comput Chem Eng 2012;40:132–147.

    Article  Google Scholar 

  • Teles JP, Teles PM, Matos HA. Multi-parametric disaggregation technique for global optimization of polynomial programming problems. J Glob Optim 2013;55:227–251.

    Article  MathSciNet  Google Scholar 

  • Winston WL. Operations research: applications and algorithms. Cengage Boston, MA; 2003.

    MATH  Google Scholar 

  • Wu TH. A note on a global approach for general 0-1 fractional programming. Eur J Oper Res 1997;101:220–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MirHassani, S.A., Hooshmand, F. (2019). Linearization of Nonlinear Functions. In: Methods and Models in Mathematical Programming. Springer, Cham. https://doi.org/10.1007/978-3-030-27045-2_4

Download citation

Publish with us

Policies and ethics