Skip to main content

The Pathophysiology of Obesity and Obesity-Related Disease

  • Chapter
  • First Online:
The ASMBS Textbook of Bariatric Surgery

Abstract

Body weight is controlled by physiologic systems that regulate food intake, metabolic rate, and multiple other metabolic functions. These physiologic systems have been selected over eons of human evolution in a nutrient-poor environment, imparting a selective advantage in the form of metabolic thrift. Metabolic thrift causes a blossoming of the obesity phenotype in a modern nutrient-rich obesogenic environment. Adipose tissue acts as a buffer for high-energy nutrients and metabolites, protecting other tissues from nutrient excess and nutrient toxicity. Metabolic disease results from a failure of adipose tissue nutrient buffering capacity due to chronic delivery of excess nutrients to adipocytes, which in turn leads to nutrient overflow into the systemic circulation. Resulting nutrient toxicity in virtually all peripheral tissues generates complex cell stress responses that underlie the pathogenesis of metabolic disease, a diverse set of pathologies that involve every organ system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgRP:

Agouti-related peptide

ARCN:

Arcuate nucleus

ATM:

Adipose tissue macrophages

BAT:

Brown adipose tissue

BMI:

Body mass index

CART:

Cocaine- and amphetamine-regulated transcript

CNS:

Central nervous system

DIT:

Diet-induced thermogenesis

ER:

Endoplasmic reticulum

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

GWAS:

Genome-wide association analysis

HFC:

Hypothalamic feeding center

LCFA:

Long-chain fatty acids

LHA:

Lateral hypothalamic area

MAPK:

Mitogen-activated protein kinases

MCH:

Melanin-concentrating hormone

MSH:

Melanocyte stimulating hormone

NAFLD:

Nonalcoholic fatty liver disease

NEAT:

Non-exercise-induced thermogenesis

NO:

Nitric oxide

NPY:

Neuropeptide Y

NREE:

Non-resting energy expenditure

POMC:

Pro-opiomelanocortin

PUFA:

Polyunsaturated fatty acids

PVN:

Paraventricular nucleus

REE:

Resting energy expenditure

ROS:

Reactive oxygen species

SAT:

Subcutaneous adipose tissue

SNP:

Single nucleotide polymorphism

SVF:

Stromal-vascular cell fraction

TEE:

Total energy expenditure

UCP:

Uncoupling proteins

UPR:

Unfolded protein response

VAT:

Visceral adipose tissue

WAT:

White adipose tissue

References

  1. Friedman JM. Modern science versus the stigma of obesity. Nat Med. 2004;10(6):563–9.

    Article  CAS  PubMed  Google Scholar 

  2. Prentice AM. Fires of life: the struggles of an ancient metabolism in a modern world. Br Nutr Found Nutr Bull. 2001;26:13–27.

    Article  Google Scholar 

  3. Conard NJ. A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature. 2009;459:248–52.

    Article  CAS  PubMed  Google Scholar 

  4. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults. JAMA. 2010;303(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  6. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.

    Article  CAS  PubMed  Google Scholar 

  7. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  CAS  PubMed  Google Scholar 

  8. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–75.

    Article  CAS  PubMed  Google Scholar 

  9. Crowley VE. Overview of human obesity and central mechanisms regulating energy homeostasis. Ann Clin Biochem. 2008;45(Pt 3):245–55.

    Article  CAS  PubMed  Google Scholar 

  10. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zarkesh-Esfahani H, Pockley G, Metcalfe RA, Bidlingmaier M, Wu Z, Ajami A, et al. High-dose leptin activates human leukocytes via receptor expression on monocytes. J Immunol. 2001;167(8):4593–9.

    Article  CAS  PubMed  Google Scholar 

  12. Paz-Filho G, Babikian T, Asarnow R, Esposito K, Erol HK, Wong M, et al. Leptin replacement improves cognitive development. PLoS One. 2008;3(8):1–7.

    Article  CAS  Google Scholar 

  13. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.

    Article  CAS  PubMed  Google Scholar 

  14. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    Article  CAS  PubMed  Google Scholar 

  15. Briggs DI, Andrews ZB. A recent update on the role of ghrelin in glucose homeostasis. Curr Diabetes Rev. 2011;7(3):201–7.

    Article  CAS  PubMed  Google Scholar 

  16. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbaum M, Vandenborne K, Goldsmith R, Simoneau J, Heymsfield S, Joanisse D, et al. Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Phys. 2003;285:R183–92.

    Article  CAS  Google Scholar 

  18. Astrup A, Gotzsche PC, van Werken K, Ranneires C, Toubro S, Raben A, et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr. 1999;69:1117–22.

    Article  CAS  PubMed  Google Scholar 

  19. Stock MJ. Gluttony and thermogenesis revisited. Int J Obes. 1999;23:1105–17.

    Article  CAS  Google Scholar 

  20. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322:1477–82.

    Article  CAS  PubMed  Google Scholar 

  21. Straznicky NE, Eikelis N, Nestel PJ, Dixon JB, Dawood T, Grima MT, et al. Baseline sympathetic nervous system activity predicts dietary weight loss in obese metabolic syndrome subjects. J Clin Endocrinol Metab. 2012;97(2):605–13.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenbaum M, Hirsch J, Murphy E, Leibel RL. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr. 2000;71(6):1421–32.

    Article  CAS  PubMed  Google Scholar 

  23. Levine JA, Vander Weg MW, Hill JO, Klesges RC. Non-exercise activity thermogenesis: the crouching tiger hidden dragon of societal weight gain. Arterioscler Thromb Vasc Biol. 2006;26(4):729–36.

    Article  CAS  PubMed  Google Scholar 

  24. Enerback S. Brown adipose tissue in humans. Int J Obes. 2010;34:S43–6.

    Article  CAS  Google Scholar 

  25. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.

    Article  CAS  PubMed  Google Scholar 

  26. Dulloo AG, Samec S. Uncoupling proteins: do they have a role in body weight regulation? News Physiol Sci. 2000;15:313–8.

    CAS  PubMed  Google Scholar 

  27. Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest. 1995;96:2914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Musa CV, Mancini A, Labruna G, Valerio G, Franzese A, Pasanisi F, et al. Four novel UCP3 gene variants associated with childhood obesity: effect on fatty acid oxidation and on prevention of triglyceride storage. Int J Obes. 2012;36(2):207–17.

    Article  CAS  Google Scholar 

  29. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242–56.

    Article  CAS  PubMed  Google Scholar 

  30. Bessesen DH. Regulation of body weight: what is the regulated parameter? Physiol Behav. 2011;104:599–607.

    Article  CAS  PubMed  Google Scholar 

  31. Ostan I, Poljsak B, Simcic M, Tijskens LMM. Appetite for the selfish gene. Appetite. 2010;54:442–9.

    Article  PubMed  Google Scholar 

  32. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Speakman JR. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘drifty gene’ hypothesis. Int J Obes. 2008;32(11):1611–7.

    Article  CAS  Google Scholar 

  34. Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metab. 2007;6(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  35. McEvoy BP, Powell JE, Goddard ME, Visscher PM. Human population dispersal “Out of Africa” estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res. 2011;21(6):821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Llewellyn CH, van Jaarsveld CH, Johnson L, Carnell S, Wardle J. Nature and nurture in infant appetite: analysis of the Gemini twin birth cohort. Am J Clin Nutr. 2010;91(5):1172–9.

    Article  CAS  PubMed  Google Scholar 

  37. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hawkes J, Wang ET, Cochran GM, Harpending HC, Moyzis RK. Recent acceleration of human adaptive evolution. PNAS USA. 2007;104(52):20753–8.

    Article  Google Scholar 

  39. Teebi AS, Teebi SA. Genetic diversity among the Arabs. Community Genet. 2005;8(1):21–6.

    Article  PubMed  Google Scholar 

  40. Guy-Grand B. From obesity to obesities: from concepts to practices. Ann Endocrinol (Paris). 2003;64(5 Pt 2):S7–15.

    CAS  Google Scholar 

  41. Voruganti VS, Cai G, Cole SA, Freeland-Graves JH, Laston S, Wenger CR, et al. Common set of genes regulates low-density lipoprotein size and obesity-related factors in Alaskan Eskimos: results from the GOCADAN study. Am J Hum Biol. 2006;18(4):525–31.

    Article  PubMed  Google Scholar 

  42. Myles S, Lea RA, Ohashi J, Chambers GK, Weiss JG, Hardouin E, et al. Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans. BMC Med Genet. 2011;12:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayes M, Chustek M, Heshka S, Wang Z, Pietrobelli A, Heymsfield SB. Low physical activity levels of modern Homo sapiens among free-ranging mammals. Int J Obes. 2005;29(1):151–6.

    Article  CAS  Google Scholar 

  44. Economic Research Service: www.ers.usda.gov.

  45. Merkestein M, Brans MA, Luijendijk MC, de Jong JW, Egecioglu E, Dickson SL, et al. Ghrelin mediates anticipation to a palatable meal in rats. Obesity (Silver Spring). 2012;20(5):963–71.

    Article  CAS  Google Scholar 

  46. Gimble JM, Sutton GM, Bunnell BA, Ptitsyn AA, Floyd ZE. Prospective influences of circadian clocks in adipose tissue and metabolism. Nat Rev Endocrinol. 2011;7(2):98–107.

    Article  CAS  PubMed  Google Scholar 

  47. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grant JL, MacKay KC, Manuel PM, McHugh TL. Barriers to optimizing investments in the built environment to reduce youth obesity: policy-maker perspectives. Can J Public Health. 2010;101(3):237–40.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185(1–2):93–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11.

    Article  CAS  PubMed  Google Scholar 

  51. Shi H, Strader AD, Woods SC, Seeley RJ. The effect of fat removal on glucose tolerance is depot specific in male and female mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1012–20.

    Article  CAS  PubMed  Google Scholar 

  52. Cypress AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  Google Scholar 

  53. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes. 2009;33(1):54–66.

    Article  CAS  Google Scholar 

  55. O’Rourke RW, White AE, Metcalf MD, Olivas AS, Mitra P, Larison WG, et al. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia. 2011;54(6):1480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86.

    Article  CAS  PubMed  Google Scholar 

  57. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281(36):26602–14.

    Article  CAS  PubMed  Google Scholar 

  58. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  59. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:89–93.

    Article  CAS  Google Scholar 

  60. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59(7):1648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56(6):1592–9.

    Article  CAS  PubMed  Google Scholar 

  63. Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, et al. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metab. 2007;92(11):4476–9.

    Article  CAS  PubMed  Google Scholar 

  64. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A. 2009;106(42):17787–92.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113(11):1582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thaler JP, Choi SJ, Schwartz MW, Wisse BE. Hypothalamic inflammation and energy homeostasis: resolving the paradox. Front Neuroendocrinol. 2010;31(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  67. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  68. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  69. Pappo I, Becovier H, Berry EM, Freund HR. Polymyxin B reduces cecal flora, TNF production and hepatic steatosis during total parenteral nutrition in the rat. J Surg Res. 1991;51:106–12.

    Article  CAS  PubMed  Google Scholar 

  70. Smith BW, Adams LA. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol. 2011;7:456–65.

    Article  CAS  PubMed  Google Scholar 

  71. Mohanty SR, Troy TN, Huo D, O’Brien BL, Jensen DM, Hart J. Influence of ethnicity on histological differences in non-alcoholic fatty liver disease. J Hepatol. 2009;50(4):797–804.

    Article  PubMed  Google Scholar 

  72. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134:424–31.

    Article  CAS  PubMed  Google Scholar 

  75. Tilg H, Jalan R, Kaser A, Davies NA, Offner FA, Hodges SJ, et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J Hepatol. 2003;38:419–25.

    Article  CAS  PubMed  Google Scholar 

  76. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–6.

    Article  CAS  PubMed  Google Scholar 

  77. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–46.

    Article  CAS  PubMed  Google Scholar 

  78. Centers for Disease Control and Prevention: www.cdc.gov.

  79. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876–85.

    Article  CAS  PubMed  Google Scholar 

  80. Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009;58:2525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim HJ, Higashimori T, Park SY, Choi H, Dong J, Kim YJ, et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes. 2004;53:1060–7.

    Article  CAS  PubMed  Google Scholar 

  82. Faghihimani E, Aminorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F, Amini M. Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 2011;50:537–43.. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  83. Ursini F, Naty S, Grembiale RD. Infliximab and insulin resistance. Autoimmun Rev. 2010;9(8):536–9.

    Article  CAS  PubMed  Google Scholar 

  84. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1 receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.

    Article  CAS  PubMed  Google Scholar 

  85. Cruz AB, Amatuzio DS, Grande F, Hay LJ. Effect of intraarterial insulin on tissue cholesterol and fatty acids in alloxan-diabetic dogs. Circ Res. 1961;9:39–43.

    Article  CAS  PubMed  Google Scholar 

  86. Bugiardini R, Manfrini O, Pizzi C, Fontana F, Morgagni G. Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiogram. Circulation. 2004;109:2518–23.

    Article  PubMed  Google Scholar 

  87. Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev-Drug Discov. 2011;10:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh SK, Grifson JJ, Mavuduru RS, Agarwal MM, Mandal AK, Jha V. Serum leptin: a marker of prostate cancer irrespective of obesity. Cancer Biomark. 2010;7(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  89. Baglietto L, English DR, Hopper JL, Morris HA, Tilley WD, Giles GG. Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol Biomark Prev. 2007;16(4):763–8.

    Article  CAS  Google Scholar 

  90. Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol. 2004;167(3):399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010;3(11):1451–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. O’Rourke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Rourke, R.W. (2020). The Pathophysiology of Obesity and Obesity-Related Disease. In: Nguyen, N., Brethauer, S., Morton, J., Ponce, J., Rosenthal, R. (eds) The ASMBS Textbook of Bariatric Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-27021-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27021-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27020-9

  • Online ISBN: 978-3-030-27021-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics