Advertisement

Implication of Experimental Results to Geochemistry of Cr in the Earth’s Mantle

  • Ekaterina A. MatrosovaEmail author
  • Andrey V. Bobrov
  • Luca Bindi
Chapter
  • 153 Downloads
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Among the host phases for chromium in the upper mantle are chrome-spinel, chromium-bearing pyroxene, and knorringitic garnet, which is the major phase concentrating chromium, since the contents of Cr2O3 in garnets may be high within the whole range of garnet stability including the field of majoritic garnet. The key in the transition zone of the mantle is assigned to the knorringite-majorite garnet, which, with increasing pressure, is enriched by the majoritic component. With further increase in pressure up to ~17 GPa, it should be replaced with chromium-bearing akimitoite (Cr-Ak), which, however, is not found in the mantle mineral associations. The lower mantle substrate is predominantly composed of magnesiowüstite (ferropericlase) (Mg,Fe)O, CaSiO3 with the perovskite-type structure and MgSiO3 bridgmanite; the latter is formed from MgSiO3 Ak at a pressure of ~21 GPa. In this chapter, from the point of view of the possibility of chromium accumulation, we consider the major high-pressure phases obtained in experiments and established in nature.

References

  1. Akaogi M, Akimoto A (1977) Pyroxene-garnet solid-solution equilibria in the system Mg4Si4O12-Mg3Al2Si2O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 111:90–106CrossRefGoogle Scholar
  2. Andrault D (2003) Cationic substitution in MgSiO3 perovskite. Phys Chem Minerals 4200:1–12Google Scholar
  3. Arai S (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett 379:81–87CrossRefGoogle Scholar
  4. Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle–melt interaction products. Econ Geol 89:1279–1288CrossRefGoogle Scholar
  5. Bindi L, Griffin WL, Panero WR, Sirotkina EA, Bobrov AV, Irifune T (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci Rep 8:5457CrossRefGoogle Scholar
  6. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 °C. J Phys Chem Solids 75:638–641CrossRefGoogle Scholar
  7. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2015) Structural and chemical characterization of Mg[(Cr, Mg)(Si, Mg)]O4, a new post-spinel phase with six-fold coordinated silicon. Am Mineral 100:1633–1636CrossRefGoogle Scholar
  8. Bulatov V, Brey GP, Foley SF (1991) Origin of low-Ca, high-Cr garnets by recrystallization of low-pressure harzburgites. In: 5th Int kimberlite conf extended abstracts 91:29–31Google Scholar
  9. Canil D, Wei KJ (1992) Constraints on the origin of mantle-derived low Ca garnets. Contrib Mineral Petrol 109:421–430CrossRefGoogle Scholar
  10. Davies RM, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamond from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume. Lithos 77:99–111CrossRefGoogle Scholar
  11. Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271:1841–1845CrossRefGoogle Scholar
  12. Frost DJ, Langenhorst F (2002) The effect of Al2O3 on Fe-Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet Sci Lett 199:227–241CrossRefGoogle Scholar
  13. Griffin WL, Sobolev NV, Ryan CG, Pokhilenko NP, Win TT, Yefimova ES (1993) Trace elements in garnets and chromites: diamond formation in the Siberian lithosphere. Lithosphere 29:235–256CrossRefGoogle Scholar
  14. Grütter H, Latti D, Menzies A (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801–820CrossRefGoogle Scholar
  15. Grütter HS (2001) The genesis of high Cr/Al garnet peridotite, with implications for cratonic crust: mantle architecture. The Slave-Kaapvaal workshop, MerrickvilleGoogle Scholar
  16. Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857CrossRefGoogle Scholar
  17. Garanin VK, Garanin KV, Vasilieva ER, Verichev EM, Kostrovitsky SI, Kudriavtseva GP, Pisarev PA (2004) Mineralogy of mantle xenoliths from diamondiferous V. Grib kimberlite pipe (Arkhangelsk Province, Russia). Izv Vuzov. Geol Razv 6:26–30 In RussianGoogle Scholar
  18. Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, Gonzalez-Jimenez JM, Satsukawa T (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57(4):655–684CrossRefGoogle Scholar
  19. Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Min Mag 74(2):189–215CrossRefGoogle Scholar
  20. Harte B, Harris JW (1994) Lower mantle mineral association preserved in diamonds. Min Mag 58A:384–385CrossRefGoogle Scholar
  21. Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. Mantle Petrol: field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd (The Geochemical Society, Houston) 6:125–153Google Scholar
  22. Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. J Geophys Res, vol 107Google Scholar
  23. Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149(4):430–445CrossRefGoogle Scholar
  24. Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the siberian craton: new constraints from fresh peridotites in the Udachnaya-East Kimberlite. J Petrol 51:2177–2210CrossRefGoogle Scholar
  25. Irifune T (1994) Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature 370:131–133CrossRefGoogle Scholar
  26. Irifune T (1987) An experimental investigation of the pyroxene–garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336CrossRefGoogle Scholar
  27. Irifune T, Koizumi T, Ando JI (1996) An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157CrossRefGoogle Scholar
  28. Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet Sci Lett 86:365–376CrossRefGoogle Scholar
  29. Ishii T, Kojitani H, Fujino K, Yusa H, Mori D, Inaguma Y, Matsushita Y, Yamaura K, Akaogi M (2015) High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultra-high pressure chromitites in ophiolites. Am Mineral 100:59–65CrossRefGoogle Scholar
  30. Ivanic TJ (2007) The chromite–garnet peridotite assemblages and their role in the evolution of the mantle lithosphere. Ph.D. Thesis, University of Edinburgh, EdinburghGoogle Scholar
  31. Kaminsky FV, Wirth R, Schreiber A (2015) A microinclusion of lower-mantle rock and other mineral and nitrogen lower-mantle inclusions in a diamond. Canadian Mineralogist 53(1):83–104CrossRefGoogle Scholar
  32. Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753CrossRefGoogle Scholar
  33. Kato T, Ringwood AE, Irifune T (1988) Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle. Earth Planet Sci Lett 89:123–145CrossRefGoogle Scholar
  34. Kesson SE, Ringwood AE (1989) Slab-mantle interactions: 1. Sheared and refertilised garnet peridotite xenoliths—samples of Wadati-Benioff zones? Chemical Geology 78(2):83–96Google Scholar
  35. Liang F, Yang J, Xu Z, Zhao J (2014) Moissanite and chromium-rich olivine in the Luobusa mantle peridotite and chromitite, Tibet: deep mantle origin implication. J Himalayan Earth Sci (Special Volume) 103Google Scholar
  36. Malinovskii IY, Doroshev AM, Ran EN (1975) The stability of chromium-bearing garnets pyrope–knorringite series. In: Experimental studies on the mineralogy (1974–1976), Institute of Geology and Geophysics of the Siberian Branch of AS USSR, Novosibirsk, pp 110–115. [in Russian]Google Scholar
  37. McCammon CA (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696CrossRefGoogle Scholar
  38. Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:553–555CrossRefGoogle Scholar
  39. Ono S, Yasuda A (1996) Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 C. Phys Earth Planet Int 96(2–3):171–179CrossRefGoogle Scholar
  40. Parise J, Wang Y, Dwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12) – majoritc (MgSiO3) join. Geophys Res Lett 23(25):3799–3802Google Scholar
  41. Perillat J-P, Ricolleau A, Daniel I, Fiquet G, Mezouar M., Guignot N., Cardon H (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle.// Phys Earth Planet Inter 157:139–149Google Scholar
  42. Ringwood AE (1966) The chemical composition and origin of the Earth. In: Hurley PM (ed) Advances in Earth science. M.I.T. Press, Cambridge, pp 287–356Google Scholar
  43. Ringwood AE (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55(8):2083–2110CrossRefGoogle Scholar
  44. Ringwood AE, Irifune T (1988) Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature 331:131–136CrossRefGoogle Scholar
  45. Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418CrossRefGoogle Scholar
  46. Robinson PT, Bai W-J, Malpas J, Yang J-S, Zhou M-F, Fang Q-S, Hu X-F, Cameron S, Standigel H (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the tectonic evolution of China, Geological Society of London, pp 247–271Google Scholar
  47. Schulze DJ (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71:195–213CrossRefGoogle Scholar
  48. Schulze DJ (1995) Low-Ca garnet harzburgites from Kimberley, South Africa: Abundance and bearing on the structure and evolution of the lithosphere. J Geophys Res Solid Earth 617:12513–12526CrossRefGoogle Scholar
  49. Scott Smith BH, Danchin RV, Harris JW, Stracke KJ (1984) Kimberlites near Orroroo, South Australia. Kimberlites I: Kimberlites and Related Rocks. Elsevier 1:121–142Google Scholar
  50. Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at 10–24 GPa and 1,600 & #xB0;C. Contrib Mineral Petrol 169:2CrossRefGoogle Scholar
  51. Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2018) Chromium-bearing phases in the Earth’s mantle: evidence from experiments in the Mg2SiO4–MgCr2O4 system at 10–24 GPa and 1600C. Amer Mineral 103(1):151–160CrossRefGoogle Scholar
  52. Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the Upper Mantle. American Geophysical Union, Washington, DC, p 279Google Scholar
  53. Sobolev NV (1983) Parageneses of diamond and the problem of deep mineral genesis. Zap VMO 112(4):389–396 In RussianGoogle Scholar
  54. Sobolev NV, Lavrent’Ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib Mineral Petrol 40(1):39–52CrossRefGoogle Scholar
  55. Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13(5):883–892CrossRefGoogle Scholar
  56. Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism-evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Mineral Petrol 129(2–3):143–154CrossRefGoogle Scholar
  57. Stachel T, Brey GP, Harris JW (2000) Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contib Mineral Petrol 140:1–15CrossRefGoogle Scholar
  58. Stachel T, Harris JW, Brey GP (1998) Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib Mineral Petrol 132:34–47CrossRefGoogle Scholar
  59. Stixrude L, Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in the Earth’s mantle. Earth Planet Sci Lett 263:45–55CrossRefGoogle Scholar
  60. Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chem Erde 64:1–74CrossRefGoogle Scholar
  61. Van Achterbergh E, Griffin WL, Stiefenhofer J (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib Mineral Petrol 141(4):397–414CrossRefGoogle Scholar
  62. Wang Y, Weidner DJ, Zhang J, Gwanrnesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope-majorite join. Phys Earth Planet Inter 105:59–71CrossRefGoogle Scholar
  63. Wilding MC (1990) A study of diamonds with syngenetic inclusions. Unpublished Ph.D. Thesis, University of Edinburgh, UK, p 281Google Scholar
  64. Wood BJ (2000) Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet Sci Lett 174:341–354CrossRefGoogle Scholar
  65. Yamamoto S, Komiya T, Hirose K, Maruyama S (2009) Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109:314–322CrossRefGoogle Scholar
  66. Yang J-S, Dobrzhinetskaya L, Bai W-J, Fang Q-S, Robinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite Tibet. Geology 35:875–878CrossRefGoogle Scholar
  67. Yufeng R, Fangyuan C, Jingsui Y, Yuanhong G (2008) Exsolutions of diopside and magnetite in olivine from mantle dunite, Luobusa ophiolite, Tibet, China. Acta Geologica Sinica (English Edition) 82:377–384CrossRefGoogle Scholar
  68. Zedgenizov DA, Shatsky VS, Panin AV, Evtushenko OV, Ragozin AL, Kagi H (2015) Evidence for phase transitions in mineral inclusions in superdeep diamonds of the São Luiz deposit (Brazil). Russ Geol Geophys 56(1–2):296–305CrossRefGoogle Scholar
  69. Zhang Y, Wang C, Jin Z, Chen T, Wu X, Liu W, Wu Y (2018) High-pressure phase transitions of natural chromitite from Tibetan ophiolites. Lithos 320–321:20–27Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ekaterina A. Matrosova
    • 1
    Email author
  • Andrey V. Bobrov
    • 2
  • Luca Bindi
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry RASMoscowRussia
  2. 2.Department of GeologyMoscow State UniversityMoscowRussia
  3. 3.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations