Advertisement

Structural Patterns of Cr-Bearing Phases and the Influence of Chromium on the Solid Solutions of the Major Mantle Minerals and Phase Transitions

  • Ekaterina A. MatrosovaEmail author
  • Andrey V. Bobrov
  • Luca Bindi
Chapter
  • 150 Downloads
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Crystals of chromium-rich phases of fair diffraction quality synthesized in experiments on the investigation of phase relations in the SiO2–MgO–Cr2O3 system, have been studied by means of single-crystal X-ray diffraction. For the selected phases (majorite-knorringite garnet, akimotoite, bridgmanite, MgCr2O4 with calcium-titanate-type structure, Mg(Mg,Si,Cr)2O4 with distorted calcium-titanate structure, anhydrous phase B, olivine, wadsleyite and ringwoodite), we determined the unit-cell parameters, the space group, and the mechanism of chromium incorporation in their structures. Also, we compare the influence of two minor elements (aluminum and chromium) on the unit-cell parameters of deep minerals (garnet, akimotoite and bridgmanite).

References

  1. Akaogi M, Akimoto A (1977) Pyroxene-garnet solid-solution equilibria in the system Mg4Si4O12–Mg3Al2Si2O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 111:90–106CrossRefGoogle Scholar
  2. Akaogi M, Tanaka A, Ito E (2002) Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys Earth Planet Inter 132:303–324CrossRefGoogle Scholar
  3. Andrault D (2007) Properties of lower-mantle Al-(Mg,Fe)SiO3 perovskite, vol 421 (Special papers). Geological Society of America, pp 15–36Google Scholar
  4. Angel RJ, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Mineral 74:509–512Google Scholar
  5. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014a) Chromium solubility in MgSiO3 ilmenite at high pressure. Phys Chem Miner 41:519–526CrossRefGoogle Scholar
  6. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014b) Chromium solubility in perovskite at high pressure: the structure of (Mg1−xCrx)(Si1−xCrx)O3 (with x = 0.07) synthesized at 23 GPa and 1600 °C. Am Mineral 99:866–869CrossRefGoogle Scholar
  7. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014c) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 °C. J Phys Chem Solids 75:638–641CrossRefGoogle Scholar
  8. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2015) Structural and chemical characterization of Mg[(Cr,Mg)(Si,Mg)]O4, a new post-spinel phase with six-fold coordinated silicon. Am Mineral 100:1633–1636CrossRefGoogle Scholar
  9. Bindi L, Sirotkina EA, Bobrov AV, Nestola F, Irifune T (2016) Chromium solubility in anhydrous phase B. Phys Chem Miner 43:103–110CrossRefGoogle Scholar
  10. Bindi L, Griffin WL, Panero WR, Sirotkina E, Bobrov A, Irifune T (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci Rep 8:5457.  https://doi.org/10.1038/s41598-018-23790-9CrossRefGoogle Scholar
  11. Bykova EA, Bobrov AV, Sirotkina EA, Bindi L, Ovsyannikov SV, Dubrovinsky LS, Litvin YuA (2014) X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16 GPa and 1600 °C. Phys Chem Miner 41(4):267–272Google Scholar
  12. Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in the Earth’s mantle. Science 294:354–357CrossRefGoogle Scholar
  13. Dobson DP, Jacobsen SD (2004) The flux growth of magnesium silicate perovskite single crystals. Am Mineral 89:807–811CrossRefGoogle Scholar
  14. Dymshits AM, Litasov KD, Sharygin IS, Shatskiy A, Ohtani E, Suzuki A, Funakoshi K (2014) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. J Geophys Res Solid Earth 119(11):8034–8046CrossRefGoogle Scholar
  15. Finger LW, Ko J, Hazen RM, Gasparik T, Hemley RJ, Prewitt CT, Weidner DJ (1989) Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle. Nature 341:140–142CrossRefGoogle Scholar
  16. Finger LW, Hazen RM, Prewitt CT (1991) Crystal structures of Mg12Si4O19(OH)2 (phase B) and Mg14Si5O24 (phase AnhB). Am Mineral 76:1–7Google Scholar
  17. Finger LW, Hazen RM, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite β-(Mg1−xFex)2SiO4, 0.00 < x < 0.40. Phys Chem Miner 19:361–368CrossRefGoogle Scholar
  18. Gasparik T (2002) Experimental investigation of the origin of majoritic garnet inclusions in diamonds. Phys Chem Miner 29(3):170–180CrossRefGoogle Scholar
  19. Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, Gonzalez-Jimenez JM, Satsukawa T (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57(4):655–684CrossRefGoogle Scholar
  20. Gudfinnsson GH, Wood BJ (1998) The effect of trace elements on the olivine–wadsleyite transformation. Am Mineral 83:1037–1044CrossRefGoogle Scholar
  21. Hazen RM, Finger LW, Ko J (1992) Crystal chemistry of Fe-bearing anhydrous phase B: implications for transition zone mineralogy. Am Mineral 77:217–220Google Scholar
  22. Hazen RM, Downs RT, Finger LW (1993) Crystal chemistry of ferromagnesian silicate spinels: evidence for Mg–Si disorder. Am Mineral 78:1320–1323Google Scholar
  23. Hazen RM, Weinberger MB, Yang H, Prewitt CT (2000) Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg1−xFex)2SiO4, with x = 0 and 0.25. Am Mineral 85(5–6):770–777Google Scholar
  24. Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)–pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth’s transition zone. Phys Chem Miner 24:206–221CrossRefGoogle Scholar
  25. Hill RJ, Newton MD, Gibbs GV (1983) A crystal chemical study of stishovite. J Solid State Chem 47:185–200CrossRefGoogle Scholar
  26. Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenite-type): single crystal X-ray diffraction study. Am Mineral 67:788–793Google Scholar
  27. Horiuchi H, Ito E, Weidner DJ (1987) MgSiO3 (perovskite-type): single crystal X-ray diffraction study. Am Mineral 72:357–360Google Scholar
  28. Ishii T, Tsujino N, Arii H, Fujino K, Miyajima N, Kojitani H, Kunimoto T, Akaogi M (2017) A shallow origin of so-called ultrahigh-pressure chromitites, based on single-crystal X-ray structure analysis of the high-pressure Mg2Cr2O5 phase, with modified ludwigite-type structure. Am Mineral 102:2113–2118CrossRefGoogle Scholar
  29. Juhin A, Morin G, Elkaim E, Frost DJ, Fialin M, Juillot F, Calas G (2010) Structure refinement of a synthetic knorringite, Mg3(Cr0.8Mg0.1Si0.1)2(SiO4)3. Am Mineral 95:59–63CrossRefGoogle Scholar
  30. Kimata M, Ii N (1981) The crystal structure of synthetic åkermanite, Ca2MgSi2O7. Neues Jahr Min Monat 144:254–267Google Scholar
  31. Kojitani H, Hisatomi R, Akaogi M (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4. Am Mineral 92:1112–1118CrossRefGoogle Scholar
  32. Kojitani H, Enomoto A, Tsukamoto S, Akaogi M, Miura H, Yusa H (2010). High-pressure high-temperature phase relations in MgAl2O4. J Phys Conf Ser 215(1):012098 (IOP Publishing)Google Scholar
  33. McMillan P, Akaogi M, Ohtani E, Williams Q, Nieman R, Sato R (1989) Cation disorder in garnets along the Mg3Al2Si3O12–Mg4Si4O12 join: an infrared, Raman and NMR study. Phys Chem Miner 16(5):428–435CrossRefGoogle Scholar
  34. Ottonello G, Bokreta M, Sciuto PF (1996) Parameterization of energy and interactions in garnets: end-member properties, pp 429–447CrossRefGoogle Scholar
  35. Ovsyannikov S, Dubrovinsky L (2011) High-pressure high-temperature synthesis of Cr2O3 and Ga2O3. High Pres Res 31:23–29CrossRefGoogle Scholar
  36. Panero WR, Akber-Knutson S, Stixrude L (2006) Al2O3 incorporation in MgSiO3 perovskite and ilmenite. Earth Planet Sci Lett 252:152–161CrossRefGoogle Scholar
  37. Parise J, Wang Y, Dwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)–majoritic (MgSiO3) join. Geophys Res Lett 23(25):3799–3802CrossRefGoogle Scholar
  38. Ringwood AE (1966) The chemical composition and origin of the Earth. In: Hurley PM (ed) Advances in Earth science. M.I.T. Press, Cambridge, pp 287–356Google Scholar
  39. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172(3983):567–570CrossRefGoogle Scholar
  40. Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at 10–24 GPa and 1,600 °C. Contrib Mineral Petrol 169:2.  https://doi.org/10.1007/s00410-014-1097-0CrossRefGoogle Scholar
  41. Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2018a) Chromium-bearing phases in the Earth’s mantle: evidence from experiments in the Mg2SiO4–MgCr2O4 system at 10–24 GPa and 1600 °C. Am Miner 103(1):151–160CrossRefGoogle Scholar
  42. Sirotkina EA, Bindi L, Bobrov AV, Aksenov SM, Irifune T (2018b) Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite. Phys Chem Minerals 45(4):361–366.  https://doi.org/10.1007/s00269-017-0926-xCrossRefGoogle Scholar
  43. Vacher P, Mocquet A, Sotin C (1998) Computations of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys Earth Planet Inter 106:275–298CrossRefGoogle Scholar
  44. Van der Maijde M, Marone F, Giardini D, van der Lee S (2003) Seismic evidence for water deep in Earth’s upper mantle. Science 300:1556–1558CrossRefGoogle Scholar
  45. Yamanaka T, Uchida A, Nakamoto Y (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. Am Mineral 93:1874–1881CrossRefGoogle Scholar
  46. Yang J-S, Dobrzhinetskaya L, Bai W-J, Fang Q-S, Robinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35:875–878CrossRefGoogle Scholar
  47. Zhang J, Weidner DJ (1999) Thermal equation of state of aluminum-enriched silicate perovskite. Science 284:782–784CrossRefGoogle Scholar
  48. Zhang L, Smyth JR, Allaz J, Kawazoe T, Jacobsen SD, Jin Z (2016) Transition metals in the transition zone: crystal chemistry of minor element substitution in wadsleyite. Am Miner 101:2322–2330CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ekaterina A. Matrosova
    • 1
    Email author
  • Andrey V. Bobrov
    • 2
  • Luca Bindi
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry RASMoscowRussia
  2. 2.Department of GeologyMoscow State UniversityMoscowRussia
  3. 3.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations