Experimental Study of Cr-Bearing Phases at High Pressures

  • Ekaterina A. MatrosovaEmail author
  • Andrey V. Bobrov
  • Luca Bindi
Part of the Springer Geology book series (SPRINGERGEOL)


With a certain degree of approximation, the model system SiO2–MgO–Cr2O3 characterizes the phase associations of the different regions of the Earth’s mantle. We selected two petrologically significant sections of the ternary diagram SiO2–MgO–Cr2O3 for the experimental study: (1) the Mg4Si4O12–Mg3Cr2Si3O12 system simulating the majorite–knorringite series of solid solutions in mantle garnets and the post-garnet phases with the ilmenite- and perovskite-type structures; (2) the Mg2SiO4–MgCr2O4 system simulating the major polymorph transitions olivine–wadsleyite–ringwoodite, the phase transformations for the post-spinel phases. To study the influence of the small concentrations of Al on the parameters of crystallization and composition of Maj–Knr garnets, we carried out the series of experiments in the SiO2–MgO–Cr2O3 ± Al2O3 system at 7 GPa. The main experimental results obtained in our study are considered below.


  1. Akaogi M, Ito E, Navrotsky A (1989) The olivine-modified spinelspinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res 94:15671–15685CrossRefGoogle Scholar
  2. Akaogi M, Akimoto A (1977) Pyroxene-garnet solid-solution equilibria in the system Mg4Si4O12-Mg3Al2Si2O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 111:90–106CrossRefGoogle Scholar
  3. Akaogi M, Akimoto A (1979) High pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51CrossRefGoogle Scholar
  4. Babich YV (1980) A study of the stability of chromium-bearing pyrope–knorringite garnets at P = 3 GPa. In: Proceedings of 18th All-Union student conference “student and technological progress.” Inst. Geol. Geophys., Novosibirsk, pp 57–65Google Scholar
  5. Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib Mineral Petrol 126:1–24CrossRefGoogle Scholar
  6. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014a) Chromium solubility in MgSiO3 ilmenite at high pressure. Phys Chem Miner 41:519–526CrossRefGoogle Scholar
  7. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014b) Chromium solubility in perovskite at high pressure: the structure of (Mg1–xCrx)(Si1–xCrx)O3 (with x = 0.07) synthesized at 23 GPa and 1600 °C. Am Mineral 99:866–869CrossRefGoogle Scholar
  8. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014c) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 °C. J Phys Chem Solids 75:638–641CrossRefGoogle Scholar
  9. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2015) Structural and chemical characterization of Mg[(Cr, Mg)(Si, Mg)]O4, a new post-spinel phase with six-fold coordinated silicon. Am Mineral 100:1633–1636CrossRefGoogle Scholar
  10. Bindi L, Sirotkina EA, Bobrov AV, Nestola F, Irifune T (2016) Chromium solubility in anhydrous phase B. Phys Chem Minerals 43:103–110CrossRefGoogle Scholar
  11. Binns RA (1970) (Mg,Fe)2SiO4 spinel in a meteorite. Phys Earth Planet Inter 3:156–160CrossRefGoogle Scholar
  12. Brey GP, Doroshev AM, Girnis AV, Turkin AI (1999) Garnet–spinel–olivine–orthopyroxene equilibria in the FeO–MgO–Al2O3–SiO2–Cr2O3 system: I. Composition and molar volumes of minerals. Eur J Mineral 11(4):599–617Google Scholar
  13. Bulanova GP, Barashkov YP, Tal’nikova SB, Smelova GB (1993) Natural diamond: genetic aspects. Nauka, Novosibirsk, 168 pGoogle Scholar
  14. Bulatov V, Brey GP, Foley SF (1991) Origin of low-Ca, high-Cr garnets by recrystallization of low-pressure harzburgites. In: 5th international kimberlite conference, extended abstracts, CPRM, special publication, vol 91, pp 29–31Google Scholar
  15. Bykova EA, Bobrov AV, Sirotkina EA, Bindi L, Ovsyannikov SV, Dubrovinsky LS, Litvin YuA (2014) X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16 GPa and 1600 °C. Phys Chem Miner 41(4):267–272Google Scholar
  16. Chen M, Shu J, Xie X, Mao H (2003) Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta 67:3937–3942CrossRefGoogle Scholar
  17. Coes L (1955) High-pressure minerals. J. Am Ceram Soc 38:298CrossRefGoogle Scholar
  18. Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271:1841–1845CrossRefGoogle Scholar
  19. Doroshev AM, Brey GP, Girnis AV, Turkin AI, Kogarko LN (1997) Pyrope-knorringite garnets in the Earth’s mantle: experiments in the MgO-Al2O3-SiO2-Cr2O3 system. Rusian Geol Geophys 38:559–586Google Scholar
  20. Gasparik T (2002) Experimentional investigations of the origin majoritic garnet inclusions in diamonds. Phys Chem Minerals 29:170–180CrossRefGoogle Scholar
  21. Girnis AV, Brey GP, Doroshev AM, Turkin AI, Simon N (2003) The system MgO-Al2O3-Cr2O3 revisited: reanalysis of Doroshev et al.’s (1997) experiments and new experiments. European J Miner 15(6):953–964Google Scholar
  22. Gudfinnsson GH, Wood BJ (1998) The effect of trace elements on the olivine–wadsleyite transformation. Am Mineral 83:1037–1044CrossRefGoogle Scholar
  23. Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Miner Mag 74(2):189–215CrossRefGoogle Scholar
  24. Herzberg CT, Gasparik T (1989) Melting experiments on chondrite at high pressures: stability of anhydrous phase B. EOS Trans AGU 70(15):484Google Scholar
  25. Homan CG (1975) Phase diagram of Bi up to 140 kbars. J Phys Chem Solids 36:1249–1254CrossRefGoogle Scholar
  26. Irifune T (1987) An experimental investigation of the pyroxene–garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336CrossRefGoogle Scholar
  27. Irifune T, Fujino K, Ohtani E (1991) A new high-pressure form of MgAl2O4. Nature 349:409–411CrossRefGoogle Scholar
  28. Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H, Funakoshi K (2004) Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter 143:593–600CrossRefGoogle Scholar
  29. Irifune T, Ohtani E, Kumazawa M (1982) Stability field of knorringite Mg3Cr2Si3O12 at high pressure and its implication to the occurrence of Cr-rich pyrope in the upper mantle. Phys Earth Planet Inter 27:263–272CrossRefGoogle Scholar
  30. Ishii T, Kojitani H, Fujino K, Yusa H, Mori D, Inaguma Y, Matsushita Y, Yamaura K, Akaogi M (2015) High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultra-high pressure chromitites in ophiolites. Am Mineral 100:59–65CrossRefGoogle Scholar
  31. Juhin A, Morin G, Elkaim E, Frost DJ, Fialin M, Juillot F, Calas G (2010) Structure refinement of a synthetic knorringite, Mg3(Cr0.8Mg0.1Si0.1)2(SiO4)3. Am Mineral 95:59–63CrossRefGoogle Scholar
  32. Kaminsky F (2012) Mineralogy of the lower mantle: a review of super-deep mineral inclusions in diamond. Earth Sci Rev 110:127–147CrossRefGoogle Scholar
  33. Katsura T, Ito E (1989) The system Mg2SiO4–Fe2SiO4 at high pressure and temperatures: precise determination of stabilities of olivine, modified spinel and spinel. J Geophys Res 94:15663–15670CrossRefGoogle Scholar
  34. Kawai N, Tachimori M, Ito E (1974) A high pressure hexagonal form of MgSiO3. Proc Jpn Acad 50:378–380CrossRefGoogle Scholar
  35. Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81(14):2467–2470CrossRefGoogle Scholar
  36. Klemme S (2004) The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modeling. Lithos 77:639–646CrossRefGoogle Scholar
  37. Kojitani H, Hisatomi R, Akaogi M (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4. Am Mineral 92:1112–1118CrossRefGoogle Scholar
  38. Litvin YA (1991) Physical and chemical studies of melting of materials from the deep Earth. NaukaGoogle Scholar
  39. Liu L (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys Res Lett 1:277–280CrossRefGoogle Scholar
  40. MacGregor ID (1964) The reaction enstatite + spinel = forsterite + pyrope. In: Carnegie Institution Year Book 63. Carnegie Institute, Washington, p 157Google Scholar
  41. Malinovskii IY, Doroshev AM, Ran EN (1975) The stability of chromium-bearing garnets pyrope: knorringite series. Experimental studies on the mineralogy (1974–1976). Institute of Geology and Geophysics of the Siberian Branch of AS USSR, Novosibirsk, pp 110–115Google Scholar
  42. Matrosova EA, Bobrov AV, Bindi L, Irifune T (2018) Phase relations in the model system SiO2–MgO–Cr2O3: evidence from the results of experiments in petrologically significant sections at 12–24 GPa and 1600 °C. Petrology 26(6):588–598CrossRefGoogle Scholar
  43. Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3. Am Mineral 84:1135–1143CrossRefGoogle Scholar
  44. Ono S, Yasuda A (1996) Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 °C. Phys Earth Planet Inter 96:171–179CrossRefGoogle Scholar
  45. Ottonello G, Bokreta M, Sciuto PF (1996) Parameterization of energy an interactions in garnets: end-member properties. Am Mineral 81:429–447CrossRefGoogle Scholar
  46. Oxford Diffraction (2006) CrysAlis RED (Version and ABSPACK in CrysAlis RED. Oxford diffraction Ltd., AbingdonGoogle Scholar
  47. Parise J, Wang Y, Dwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)—majoritc (MgSiO3) join. Geophys Res Lett 23(25):3799–3802CrossRefGoogle Scholar
  48. Pokhilenko NP, Sobolev NV, Reutsky VN, Hall AE, Taylor LA (2004) Crystalline inclusions and C isotope rations in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77:57–67CrossRefGoogle Scholar
  49. Price GD, Putnis A, Agrell SO, Smith DGW (1983) Wadsleyite, natural β-(Mg, Fe)2SiO4 from the Peace River meteorite. Canad Mineral 21:29–35Google Scholar
  50. Ringwood AE (1966) The chemical composition and origin of the Earth. In: Adv Earth Sci 287–356Google Scholar
  51. Ringwood AE (1977) Composition of the core and implications for origin of the Earth. Geochem J 11(3):111–135CrossRefGoogle Scholar
  52. Shatskii VS, Zedgenizov DA, Ragozin AL (2010). Majoritic garnets in diamonds from placers of the Northeastern Siberian Platform. Doklady Earth Sci 432(2):835–838)CrossRefGoogle Scholar
  53. Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at 10–24 GPa and 1,600 °C. Contrib Miner Petrol 169:2CrossRefGoogle Scholar
  54. Sirotkina EA, Bobrov AV, Kargal’tsev AA, Ignat’ev YuA, Kadik AA (2016) The influence of low aluminum concentrations on the composition and conditions of crystallization of majorite–knorringite garnets: experiment at 7.0 GPa and 1500–1700 °C. Geochem Int 54(7):584–593Google Scholar
  55. Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2018) Chromium-bearing phases in the Earth’s mantle: evidence from experiments in the Mg2SiO4–MgCr2O4 system at 10–24 GPa and 1600 °C. Am Mineral 103(1):151–160CrossRefGoogle Scholar
  56. Sobolev NV (1983) Diamond parageneses and the problem of deep-seated mineral formation. ZVMO 4:389–397Google Scholar
  57. Sobolev NV (1974) Deep-seated inclusions in kimberlites and the problem of the Upper Mantle composition. Nauka 183 pGoogle Scholar
  58. Spivak AV, Litvin YA (2004) Diamond syntheses in multicomponent carbonate–carbon melts of natural chemistry: elementary processes and properties. Diam Relat Mater 13(3):482–487CrossRefGoogle Scholar
  59. Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism-evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Mineral Petrol 129(2–3):143–154CrossRefGoogle Scholar
  60. Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13:883–892CrossRefGoogle Scholar
  61. Stachel T, Harris JW, Brey GP (1998) Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib Mineral Petrol 132:34–47CrossRefGoogle Scholar
  62. Stixrude L, Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in the Earth’s mantle. Earth Planet Sci Lett 263:45–55CrossRefGoogle Scholar
  63. Taran MN, Langer K, Abs-Wurmbach I, Frost DJ, Platonov AN (2004) Local relaxation around [6]Cr3+ in synthetic pyrope–knorringite garnets, [8]Mg3[6](Al(1−x)Crx3+)2[4]Si3O12, from electronic absorption spectra. Phys Chem Mineral 31(9):650–657CrossRefGoogle Scholar
  64. Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chem Erde 64:1–74CrossRefGoogle Scholar
  65. Tschauner O, Ma C, Beckett JR, Prescher C, Prakapenka VB, Rossman GR (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346(6213):1100–1102CrossRefGoogle Scholar
  66. Turkin AI, Doroshev AM, Yu I (1983) Study of the phase composition of garnet-bearing associations of the system MgO–Al2O3–SiO2–Cr2O3 system at high temperatures and pressures [in Russian]. Silicate systems under high pressure, Novosibirsk. p 5Google Scholar
  67. Turkin AI, Sobolev NV (2009) Pyrope–knorringite garnets: overview of experimental data and natural parageneses. Russian Geol Geophys 50(12):1169–1182CrossRefGoogle Scholar
  68. Wang Z, O’Neill HSC, Lazor P, Saxena SK (2002) High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids 63:2057–2061CrossRefGoogle Scholar
  69. Yu YG, Wu Z, Wentzcovitc RM (2008) α–β–γ transformations in Mg2SiO4 in Earth’s transition zone. Earth Planet Sci Lett 273:115–122CrossRefGoogle Scholar
  70. Zou Y, Irifune T (2012) Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature. J Mineral Petrol Sci 107:197–205CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ekaterina A. Matrosova
    • 1
    Email author
  • Andrey V. Bobrov
    • 2
  • Luca Bindi
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry RASMoscowRussia
  2. 2.Department of GeologyMoscow State UniversityMoscowRussia
  3. 3.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations