Advertisement

Basics of Geochemistry and Mineralogy of Chromium

  • Ekaterina A. MatrosovaEmail author
  • Andrey V. Bobrov
  • Luca Bindi
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The most important chromium-bearing phases in the Earth’s upper mantle are chrome spinel, Cr-bearing pyroxene, and Knr-garnet, which are replaced with Knr-Maj garnet, MgCr2O4 with the calcium titanate-type structure, and (Mg,Fe)2SiO4 wadsleyite/ringwoodite. Ferropericlase (Mg,Fe)O and (Mg,Fe)SiO3 bridgmanite may be considered as the host phases for chromium under the lower mantle conditions. Below we review the information about the high-pressure chromium-bearing phases in the Earth's mantle. Since chromite (Fe,Mg)(Cr,Al)2O4 containing up to ~55 wt% Cr2O3 is the major ore mineral of chromium and is an accessory phase in many ultramafic rocks, the largest chromite deposits and the models of their formation are considered.

References

  1. Akaogi M (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle, vol 421 (Special papers). Geological Society of America pp 1–13Google Scholar
  2. Akaogi M, Akimoto A (1977) Pyroxene-garnet solid-solution equilibria in the system Mg4Si4O12-Mg3Al2Si2O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 111:90–106CrossRefGoogle Scholar
  3. Akaogi M, Akimoto A (1979) High pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51CrossRefGoogle Scholar
  4. Alekseev YV (1987) Heavy metals in soils and plants. Agropromizdat, Leningrad, p 95. [in Russian] Google Scholar
  5. Alifirova TA, Pokhilenko LN, Ovchinnikov YI, Donnelly CL, Riches AJV, Taylor LA (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. Int Geol Rev 54(9):1071–1092CrossRefGoogle Scholar
  6. Andrault D (2007) Properties of lower-mantle Al-(Mg, Fe)SiO3 perovskite, vol 421 (Special papers). Geological Society of America, pp 15–36Google Scholar
  7. Arai S (1997) Origin of podiform chromitites. J Asian Earth Sci 15:303–310CrossRefGoogle Scholar
  8. Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle–melt interaction products. Econ Geol 89:1279–1288CrossRefGoogle Scholar
  9. Arai S (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett 379:81–87CrossRefGoogle Scholar
  10. Augé T (1987) Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Miner Deposita 22(1):1–10CrossRefGoogle Scholar
  11. Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208(1):61–88CrossRefGoogle Scholar
  12. Badyukov DD (1985) High-pressure phases in impactites of the Zhamanshin crater (USSR)/XVI. In: Lunar and planetary science conference, Houston abstracts, pp 21–22Google Scholar
  13. Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib Mineral Petrol 126:1–24CrossRefGoogle Scholar
  14. Bindi L, Griffin WL, Panero WR, Sirotkina EA, Bobrov AV, Irifune T (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci Rep 8:5457CrossRefGoogle Scholar
  15. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014a) Chromium solubility in MgSiO3 ilmenite at high pressure. Phys Chem Miner 41:519–526CrossRefGoogle Scholar
  16. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014b) Chromium solubility in perovskite at high pressure: the structure of (Mg1–xCrx)(Si1–xCrx)O3 (with x = 0.07) synthesized at 23 GPa and 1600 °C. Am Mineral 99:866–869CrossRefGoogle Scholar
  17. Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014c) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 °C. J Phys Chem Solids 75:638–641CrossRefGoogle Scholar
  18. Binns RA (1970) (Mg, Fe)2SiO4 spinel in a meteorite. Phys Earth Planet Inter 3:156–160CrossRefGoogle Scholar
  19. Bobrov AV, Sirotkina EA, Garanin VK, Bovkun AV, Korost DV, Shkurskii BB (2012) Majoritic garnets with exsolution textures from the Mir Kimberlitic Pipe (Yakutia). Dokl Earth Sci 444(1):574–578CrossRefGoogle Scholar
  20. Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Béjina F, Abily B, Bindeman IN, Polvé M, De Parseval P, Aigouy T, Pokrovski GS (2012) A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J Petrol 53(12):2411–2440CrossRefGoogle Scholar
  21. Brey G, Wanke H (1983) Partitioning of cr, mn, V and NI between fe melt, magnesiowuestite and olivine at high pressures and temperatures, vol 14. In: Lunar and planetary science conference, pp 71–72Google Scholar
  22. Bulanova GP, Barashkov YP, Tal’nikova SB, Smelova GB (1993) Natural diamond: genetic aspects. Nauka, Novosibirsk, p 168. [in Russian]Google Scholar
  23. Bulatov V, Brey GP, Foley SF (1991) Origin of low-Ca, high-Cr garnets by recrystallization of low-pressure harzburgites, vol 5. In: International kimberlite conference: extended abstracts, pp 29–31Google Scholar
  24. Bunch TE, Fuchs LH (1969) A new mineral: brezinaite, Cr3S4, and the Tucson meteorite. Amer Mineral 54:1509–1518Google Scholar
  25. Bunch TE, Keil K (1971) Chromite and ilmenite in non-chondritic meteorites. Am Mineral 56:146–157Google Scholar
  26. Bunch TE, Keil K, Snetsinger KG (1967) Chromite composition in relation to chemistry and testure of ordinary chondrites. Geochim Cosmochim Acta 31:1569–1582CrossRefGoogle Scholar
  27. Bunch TE, Olsen E (1975) Distribution and significance of chromium in meteorites. Geochim Cosmochim Acta 39(6–7)CrossRefGoogle Scholar
  28. Burns RG (1975) On the occurrence and stability of divalent chromium in olivines included in diamonds. Contrib Mineral Petrol 51(3):213–221CrossRefGoogle Scholar
  29. Canil D, Wei K (1992) Constraints on the origin of mantle-derived low Ca garnets. Contrib Mineral Petrol 109(4):421–430CrossRefGoogle Scholar
  30. Chen M, Shu J, Mao HK (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chin Sci Bull 53(21):3341–3345CrossRefGoogle Scholar
  31. Chen M, Shu J, Xie X, Mao H (2003) Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta 67:3937–3942CrossRefGoogle Scholar
  32. Davies RM, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamond from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume. Lithos 77:99–111CrossRefGoogle Scholar
  33. Deines P, Harris JW (2004) New insights into the occurrence of 13 C-depleted carbon in the mantle from two closely associated kimberlites: Letlhakane and Orapa, Botswana. Lithos 77:1–4CrossRefGoogle Scholar
  34. Diaz-Martinez E, Sanz-Rubio E, Fernandez C, Martinez-Frias J (2001) Evidence for a small meteorite impact in Extremadura (W. Spain). In: Proceedings of the 6th European science foundation, impact workshop on impact markers in the stratigraphic record, Granada, Spain, pp 21–22Google Scholar
  35. Dick HJB, Bullen TB (1984) Chromian spine1 as a petrogenetic indicator in abyssal and alpine-type peridotites. In: Komprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships, pp 295–308Google Scholar
  36. Distler VV, Kryachko VV, Yudovskaya MA (2008) Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineral Petrol 92(1–2):31–58CrossRefGoogle Scholar
  37. Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271:1841–1845CrossRefGoogle Scholar
  38. Donath IM (1962) Die Metullischen Rohstoffe. Band 14: Chrom, p 2. Ferdinand Enke, p 371Google Scholar
  39. Dreibus G, Wanke H (1979) On the chemical composition of the Moon and the eucrite parent body and a comparison with the composition of the Earth; the case of Mn, Cr, and V, vol 10. In: Lunar and planetary science conference, pp 315–317Google Scholar
  40. Fanfani L, Zanazzi PF (1967) Structural similarities of some secondary lead minerals. Miner Mag 36:522–529Google Scholar
  41. Fanfani L, Zanazzi PF (1968) The crystal structure of vauquelinite and the relationships to fornacite. Zeits Krist 126:433–443CrossRefGoogle Scholar
  42. Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109Google Scholar
  43. Frondel C, Klein C (1965) Ureyite, NaCrSi2O6: a new meteorite pyroxene. Science 149:742–744CrossRefGoogle Scholar
  44. Garanin VK, Kudryavtseva GP, Marfunin AS, Mikhailichenko OA (1991) Inclusions in diamond and diamondiferous rocks. Izd Mos Universiteta, Moscow, p 240. [in Russian]Google Scholar
  45. Gasparik T (1990) Phase relations in the transition zone. J Geophys Res 95:15751–15769CrossRefGoogle Scholar
  46. Gasparik T (2002) Experimental investigations of the origin majoritic garnet inclusions in diamonds. Phys Chem Miner 29:170–180CrossRefGoogle Scholar
  47. Glazovskaya LI, Trubkin NV (2005) Ringwoodite in pumice of the El Gasco region (Extremadura, Western Spain). Dokl Earth Sci 405A(9):1317–1320Google Scholar
  48. Gonzalez-Jimenez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos 189:140–158CrossRefGoogle Scholar
  49. Gregoire M, Bell DR, Le Roex AP (2006) Garnet lherzolithes from the Kaapraval Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657CrossRefGoogle Scholar
  50. Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JH, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M, O’Reilly SY (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57(4):655–684CrossRefGoogle Scholar
  51. Griffin WL, Sobolev NV, Ryan CG, Pokhilenko NP, Win TT, Yefimova ES (1993) Trace elements in garnets and chromites: diamond formation in the Siberian lithosphere. Lithosphere 29:235–256Google Scholar
  52. Grütter H, Latti D, Menzies A (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801–820CrossRefGoogle Scholar
  53. Haggerty SE (1978) The redox state of planetary basalts. Geophys Res Lett 5(6):443–446CrossRefGoogle Scholar
  54. Haggerty SE, Boyd FR, Bell PM, Finger LW, Bryan WB (1970) Opaque minerals and olivine in lavas and breccias from Mare Tranquillitatis. Geochimica et Cosmoc Acta Supplement 1:513Google Scholar
  55. Haggerty SE, Sautter V (1990) Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science 248:993–996CrossRefGoogle Scholar
  56. Hanson B, Jones JH (1998) The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. Am Mineral 83:669–684CrossRefGoogle Scholar
  57. Harte B, Cayzer N (2007) Decompression and unimixing of crystals include in diamonds. Phys Chem Miner 34:647–656CrossRefGoogle Scholar
  58. Harte B, Harris JW (1994) Lower mantle mineral association preserved in diamonds. Miner Mag 58A:384–385CrossRefGoogle Scholar
  59. Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd (The Geochemical Society, Houston) 6:125–153Google Scholar
  60. Hartmann G, Wedepohl KH (1993) The composition of peridotite tectonites from the Ivrea complex, northern Italy: residues from melt extraction. Geochim Cosmochim Acta 57:1761–1782CrossRefGoogle Scholar
  61. Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149(4):430–445CrossRefGoogle Scholar
  62. Hörkner W, Hk Müller-Buschbaum (1976) Einkristalluntersuchungen von β-CaCr2O4. Zeitschrift für Naturforschung, Teil B, Anorganische Chemie Organische Chemie 31:1710–1711Google Scholar
  63. Hutchison MT, Hurtshouse MB, Light ME (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib Mineral Petrol 142(2):119–126CrossRefGoogle Scholar
  64. Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the Lithospheric Mantle in the Siberian Craton: new constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J Petrol 51:2177–2210CrossRefGoogle Scholar
  65. Irifune T (1987) An experimental investigation of the pyroxene–garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336CrossRefGoogle Scholar
  66. Irvine TN (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277CrossRefGoogle Scholar
  67. Ito E, Navrotsky A (1985) MgSiO3 ilmenite: calorimetry, phase equilibria, and decomposition at atmospheric pressure. Am Mineral 70:1020–1026Google Scholar
  68. Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res 94(B8):10637–10646CrossRefGoogle Scholar
  69. Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wanke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. In: Proceedings of the 10th lunar planet science conference, Lunar and Planetary Science Institute, Houston, pp 2031–2050Google Scholar
  70. Jones RH (1990) Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3. 0): origin by closed-system fractional crystallization, with evidence for supercooling. Geochim Cosmochim Acta 54(6):1785–1802CrossRefGoogle Scholar
  71. Jones RH, Scott ERD (1989) Petrology and thermal history of type IA chondrules in the Semarkona (LL3. 0) chondrite, vol 19. In: Lunar and planetary science conference proceedings, pp 523–536Google Scholar
  72. Joswig W, Stachel T, Harris JW, Baur WH, Brey G (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth Planet Sci Lett 173:1–6CrossRefGoogle Scholar
  73. Kaminsky FV, Khachatryan GK, Andreazza P, Araujo D, Griffin WL (2009) Superdeep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos 112S(2):833–842CrossRefGoogle Scholar
  74. Kaminsky FV, Wirth R, Schreiber AA (2015) Microinclusion of lower-mantle rock and other minerals and nitrogen lower-mantle inclusions in a diamond. Canad Mineral 53:83–104CrossRefGoogle Scholar
  75. Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753CrossRefGoogle Scholar
  76. Keil K (1968) Mineralogical and chemical relationships among enstatite chondrites. J Geophys Res 73(22):6945–6976CrossRefGoogle Scholar
  77. Kesson SE, Gerald JDF (1992) Partitioning of MgO, FeO, NiO, MnO and Cr2O3 betweem magnesian silicate perovskite and magnesiowustite implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth Planet Sci Lett 111:229–240CrossRefGoogle Scholar
  78. Kesson SE, Ringwood AE (1989) Slab-mantle interactions: 1. Sheared and refertilised garnet peridotite xenoliths—samples of Wadati-Benioff zones? Chemical Geol 78(2):83–96Google Scholar
  79. Kimura M, Chen M, Yoshida Y, El Goresy A, Ohtani E (2004) Backtransformation of high-pressure phases in a shock melt vein of an Hchondrite during atmospheric passage: implications for the survival of high-pressure phases after decompression. Earth Planet Sci Lett 217:141–150CrossRefGoogle Scholar
  80. Kouvo O, Vuorelainen Y (1958) Eskolaite, a new chromium mineral. Am Mineral 43:1098–1106Google Scholar
  81. Kushiro I (1969) The system forsterite–diopside–silica with and without water at the high pressures. Am J Sci 267A:269–294Google Scholar
  82. Lazko EE (1979) Accessory minerals of diamond and the genesis of kimberlite rocks. Nedra, Moscow, p 192. [in Russian]Google Scholar
  83. Leblanc M, Nicolas A (1992) Ophiolitic chromitites. Int Geol Rev 34(7):653–686CrossRefGoogle Scholar
  84. Leshin LA, Rubin AE, McKeegan KD (1997) The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim Cosmochim Acta 61(4):835–845CrossRefGoogle Scholar
  85. Liang F, Yang J, Xu Z, Zhao J (2014) Moissanite and chromium-rich olivine in the Luobusa mantle peridotite and chromitite, Tibet: deep mantle origin implication. J Himalayan Earth Sci (Special Volume) 103Google Scholar
  86. Liu L (1975) Post-oxide phases of forsterite and enstatite. Geophys Res Lett 2:417–419CrossRefGoogle Scholar
  87. Liu L (1976) Orthorhombic perovskite phases observed in olivine, pyroxene and garnet at high pressures and temperatures. Phys Earth Planet Inter 11:289–298CrossRefGoogle Scholar
  88. Logvinova A, Wirth R, Sobolev NV, Seryotkin YV, Yefimova ES, Floss C, Taylor LA (2008) Eskolaite associated with diamond from the Udachnaya kimberlite pipe, Yakutia, Russia. Am Mineral 93:685–690CrossRefGoogle Scholar
  89. Lorand JP, Ceuleneer G (1989) Silicate and base-metal sulfide inclusion in chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): a model for entrapment. Lithos 22:173–190CrossRefGoogle Scholar
  90. Lozanovskaya JH, Orlov DS, Sadovnikova LK (1998) Ecology and biosphere protection under chemical pollution. Vysshaya Shkola, Moscow, p 287. [in Russian]Google Scholar
  91. Matsyuk SS, Platonov AN, Khomenko VM (1985) Optical spectra and colors of mantle minerals from kimberlites. Kiev, Nukova Dumka. [in Russian]Google Scholar
  92. McCoy TJ, Scott ERD, Jones RH, Keil K, Taylor GJ (1991) Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism. Geochim Cosmochim Acta 55:601–619CrossRefGoogle Scholar
  93. McKenna NM, Gurney JJ, Klump J, Davidson JM (2004) Aspects of diamond mineralisation and distribution at the Helam Mine, South Africa. Lithos 77:193–208CrossRefGoogle Scholar
  94. Melcher F, Grum W, Thalhammer TV, Thalhammer OAR (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineral Depos 34(3):250–272CrossRefGoogle Scholar
  95. Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, NWT, Canada: major element compositions and implications for the lithosphere beneath the central slave craton. Lithos 77(1):395–412CrossRefGoogle Scholar
  96. Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester pp 501–522Google Scholar
  97. Meyer HOA, Boyd FR (1972) Composition and origin of crystalline inclusions in natural diamonds. Geochim Cosmochim Acta 59:110–119Google Scholar
  98. Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:553–555CrossRefGoogle Scholar
  99. Moore RO, Otter ML, Rickard RS, Harris JW, Gurney JJ (1986) The occurrence of moissanite and ferro-periclase as inclusions in diamond, vol 16. In: 4th international kimberlite conference extended abstracts. Perth. Geological society of Australia abstract, pp 409–411Google Scholar
  100. Nikitina LP (1993) The consistent system of thermometers and barometers for the basic and ultrabasic rocks and reconstruction of thermal conditions in the mantle based on Xenolites in Kimberlites. Zapiski Vseross Mineral Obshchestva 122(5):6–19Google Scholar
  101. Nixon PH, Hornung G (1968) A new chromium garnet end member, knorringite from kimberlite. Am Mineral 53:1833–1840Google Scholar
  102. Noller JS, Carter B (1986) The origin of various types of chromite schlieren in the Trinity Peridotite, Klamath Mountains, California. In: Carter B, Chowdhury MKR, Jankovic S, Marakushev AA, Morten L, Onikhimovsky VV, Raade G, Rocci G, Augustithis SS (eds) Metallogeny of basic and ultrabasic rocks (regional presentations) Theophrastus Athens, pp 151–178Google Scholar
  103. Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T, Kubo T (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet Sci Lett 227:505–515CrossRefGoogle Scholar
  104. Olsen E, Fuchs L (1968) Krinovite, NaMg2CrSi3O10: a new meteorite mineral. Science 161:786–787Google Scholar
  105. Olsen E, Fuchs LH, Forbes WC (1973) Chromium and phosphorus enrichment in the metal of Type II (C2) carbonaceous chondrites. Geochim Cosmochim Acta 37:2037–2042CrossRefGoogle Scholar
  106. O’Neill HSC (1991) The origin of the moon and the early history of the earth—a chemical model. Part 1: the moon. Geochim Cosmochim Acta 55(4):1135–1157CrossRefGoogle Scholar
  107. Papike JJ (1998) Comparative planetary mineralogy: chemistry of melt-derived pyroxene, feldspar, and olivine, vol 29. In: Lunar and planetary science conferenceGoogle Scholar
  108. Papike JJ, Karner JM, Shearer CK (2004) Comparative planetary mineralogy: V/(Cr + Al) systematics in chromite as an indicator of relative oxygen fugacity. Am Mineral 89:1557–1560CrossRefGoogle Scholar
  109. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B,  Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224CrossRefGoogle Scholar
  110. Perel’man AI (1989) Geochemistry. Vysshaya Shkola, Moscow, p 582. [in Russian]Google Scholar
  111. Phillips D, Harris JW, Viljoen KS (2004) Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77:155–179CrossRefGoogle Scholar
  112. Pokhilenko NP, Sobolev NV, Reutsky VN, Hall AE, Taylor LA (2004) Crystalline inclusions and C isotope rations in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77:57–67CrossRefGoogle Scholar
  113. Prendergast MD, Wilson AH, Jones MJ (1989) The Great Dyke of Zimbabwe-II: mineralization and mineral deposits. In: Magmatic sulfides—the Zimbabwe volume. Institute of Mining and Metallurgy, London, pp 21–42Google Scholar
  114. Price GD, Putnis A, Agrell SO, Smith DGW (1983) Wadsleyite, natural β-(Mg, Fe)2SiO4 from the Peace River meteorite. Canad Mineral 21:29–35Google Scholar
  115. Promprated P, Taylor LA, Anand M, Floss C, Sobolev NV, Pokhilenko NP (2004) Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos 77(1):69–81CrossRefGoogle Scholar
  116. Pushcharovsky DYu, Pushcharovsky YuM (2012) The mineralogy and the origin of deep geospheres: a review. Earth Sci Rev 113:94–109CrossRefGoogle Scholar
  117. Rammensee W, Palme H, Wanke H (1983) Experimental investigation of metal-silicate partitioning of some lithophile elements (Ta, Mn, V, Cr). Lunar Planet Sci XIV:628–629Google Scholar
  118. Ridley J (2013) Ore deposit geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  119. Ringwood AE (1966) The chemical composition and origin of the earth. In: Hurley PM (ed) Advances in earth science. M.I.T. Press, Cambridge, pp 287–356Google Scholar
  120. Ringwood AE, Irifune T (1988) Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature 331:131–136CrossRefGoogle Scholar
  121. Ringwood AE, Major A (1966a) Synthesis of Mg2SiO4-Fe2SiO4 solid solutions. Earth Planet Sci Lett 1:241–245CrossRefGoogle Scholar
  122. Ringwood AE, Major A (1966b) Some high-pressure transformations in olivines and pyroxenes. J Geophys Res 71:4448–4449CrossRefGoogle Scholar
  123. Ringwood AE, Major A (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Int 89:3Google Scholar
  124. Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418CrossRefGoogle Scholar
  125. Robinson PT, Bai WJ, Malpas J, Yang JS, Zhou MF, Fang QS, Hu XF, Cameron S, Standigel H (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the tectonic evolution of China. Geological society of London, pp 247–271Google Scholar
  126. Ryabchikov ID, Green DH, Wall VJ, Brey GP (1981) The oxidation state of carbon in the reduced-velocity zone. Geochem Int 18:148–158Google Scholar
  127. Sato M (1976) Oxygen fugacity and other thermochemical parameters of Apollo 17 high-Ti basalts and their implications on the reduction mechanism, vol 7. In: Lunar and planetary science conference proceedings, pp 1323–1344Google Scholar
  128. Sato M, Hickling NL, McLane JE (1973) Oxygen fugacity values of Apollo 12, 14, and 15 lunar samples and reduced state of lunar magmas, vol 4. In: Lunar planetary science conference proceedings, p 1061Google Scholar
  129. Sautter V, Haggerty SE, Field S (1991) Ultradeep (>300 kilometers) ultramafic xenoliths: petrological evidence from the transition zone. Science 252:827–830CrossRefGoogle Scholar
  130. Sawamoto H (1987) Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200 °C: phase stability and properties of tetragonal garnet. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics, pp 209–219CrossRefGoogle Scholar
  131. Scambelluri M, Pettke T, van Roermund HLM (2008) Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. The geological society of America, Geology 36:59–62Google Scholar
  132. Scott Smith BH, Danchin RV, Harris JW, Stracke KJ (1984) Kimberlites near Orroroo, South Australia, vol 1. In: Kimberlites I: Kimberlites and Related Rocks. Elsevier, pp 121–142Google Scholar
  133. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 32(5):751–767CrossRefGoogle Scholar
  134. Shannon RT, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 25(5):925–946CrossRefGoogle Scholar
  135. Sharp TG, Lingemann CM, Dupas C, Stoffler D (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 277:352–355CrossRefGoogle Scholar
  136. Sirotkina EA, Bindi L, Bobrov, AV, Aksenov SM, Irifune T (2018) Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite. Phys Chem Miner, 1–6Google Scholar
  137. Snetsinger KG, Keil K, Buncii TE (1967) Chromite from ‘equilibrated’ chondrites. Am Mineral 52:1322–1331Google Scholar
  138. Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. American Geophysical Union, Washington, DC, p 279Google Scholar
  139. Sobolev NV, Kaminsky FV, Griffin WL, Efimova ES, Win TT, Ryan CG, Botkunov AI (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39:135–157CrossRefGoogle Scholar
  140. Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib Mineral Petrol 40(1):39–52CrossRefGoogle Scholar
  141. Sobolev NV, Logvinova AM, Zedgenizov DA, Seryotkin YV, Yefimova ES, Floss C, Taylor LA (2004) Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77:225–242CrossRefGoogle Scholar
  142. Sobolev VS, Sobolev NV (1967) On chromium and chromium-bearing minerals in deep-seated xenoliths of kimberlite pipes. Geol Rudn Mestorozhd 2:10–16 [in Russian]Google Scholar
  143. Song S, Zhang L, Niu Y (2004) Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, northern Tibetan Plateau, NW China. Am Mineral 89:1330–1336CrossRefGoogle Scholar
  144. Spengler D, Van Roermund HL, Drury MR, Ottolini L, Mason PR, Davies GR (2006) Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature 440(7086):913–917CrossRefGoogle Scholar
  145. Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Lett 159(1–2):1–12CrossRefGoogle Scholar
  146. Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13:883–892CrossRefGoogle Scholar
  147. Stachel T, Brey GP, Harris JW (2000a) Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contib Mineral Petrol 140:1–15CrossRefGoogle Scholar
  148. Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism-evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia. Ghana Contrib Mineral Petrol 129(2–3):143–154CrossRefGoogle Scholar
  149. Stachel T, Harris JW, Aulbach S, Deines P (2002) Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. Contrib Mineral Petrol 142(4):465–475CrossRefGoogle Scholar
  150. Stachel T, Harris JW, Brey GP, Joswig W (2000b) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contib Mineral Petrol 140:16–27CrossRefGoogle Scholar
  151. Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71(2–4):489–503CrossRefGoogle Scholar
  152. Stowe CW (1994) Compositions and tectonic settings of chromite deposits through time. Econ Geol 89(3):528–546CrossRefGoogle Scholar
  153. Sutton SR, Jones KW, Gordon B, Rivers ML, Bajt S, Smith JV (1993) Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim Cosmochim Acta 57:461–468CrossRefGoogle Scholar
  154. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey G (2005) Mineral inclusions in diamonds from the Slave Province. Canada Eur J Miner 17(3):423–440CrossRefGoogle Scholar
  155. Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chem Erde 64:1–74CrossRefGoogle Scholar
  156. Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science 277:1084–1086CrossRefGoogle Scholar
  157. Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Mineral 84:267–271CrossRefGoogle Scholar
  158. Van Roermund HLM, Drury MR, Barnhoorn A, De Ronde AA (2001) Relict majoritic garnet microstructures from ultra-deep orogenic peridotites in Western Norway. J Petrol 42:117–130CrossRefGoogle Scholar
  159. Wang Z, O’Neill HSC, Lazor P, Saxena SK (2002) High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids 63:2057–2061CrossRefGoogle Scholar
  160. Wänke H, Dreibus G, Palme H (1978) Primary matter in the lunar highlands—the case of the siderophile elements, vol 9. In: Lunar and planetary science conference proceedings, pp 83–110Google Scholar
  161. Weinbruch S, Armstrong J, Palme H (1994) Constraints on the thermal history of the Allende parent body as derived from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine. Geochim Cosmochim Acta 58(2):1019–1030CrossRefGoogle Scholar
  162. Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171.  https://doi.org/10.1007/s00410-016-1255-7
  163. Wilding MC (1990) A study of diamonds with syngenetic inclusions. Unpublished Ph.D. thesis, University of Edinburgh, UK, p 281 Google Scholar
  164. Wilding MC, Harte B, Harris JW (1991) Evidence for a deep origin for the Sao Luiz diamonds. In: Fifth international kimberlite conference extended abstracts, Araxa, pp 456–458Google Scholar
  165. Xie Z, Sharp TG (2004) High-pressure phases in shock-induced melt veins of the Umbarger L6 chondrite: constraints of shock pressure. Meteorit Planet Sci 39:2043–2054CrossRefGoogle Scholar
  166. Yamamoto S, Komiya T, Hirose K, Maruyama S (2009) Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109:314–322CrossRefGoogle Scholar
  167. Yang J-S, Dobrzhinetskaya L, Bai W-J, Fang Q-S, Robinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite. Tibet Geol 35:875–878CrossRefGoogle Scholar
  168. Yusa H, Akaogi M, Ito E (1993) Calorimetric study of MgSiO3 garnet and pyroxene: heat capacities, transition enthalpies, and equilibrium phase relations in MgSiO3 at high pressures and temperatures. J Geophys Res 98:6453–6460CrossRefGoogle Scholar
  169. Zedgenizov DA, Shatsky VS, Panin AV, Evtushenko OV, Ragozin AL, Kagi H (2015) Evidence for phase transitions in mineral inclusions in superdeep diamonds of the São Luiz deposit (Brazil). Russ Geol Geophys 56(1–2):296–305CrossRefGoogle Scholar
  170. Zhang RY, Liou JG (2003) Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxene. Am Mineral 88:1591–1600CrossRefGoogle Scholar
  171. Zhang RY, Shu JF, Mao HK, Liou JG (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. Am Mineral 84(4):564–569CrossRefGoogle Scholar
  172. Zhou MF, Robinson PT (1994) High-Cr and high-Al podiform chromitites, Western China: relationship to partial melting and melt/rock reaction in the upper mantle. Int Geol Rev 36(7):678–686CrossRefGoogle Scholar
  173. Zhou MF, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites from the Luobusa ophiolite (Southern Tibet): implications for melt/rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21CrossRefGoogle Scholar
  174. Zou Y, Irifune T (2012) Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature. J Miner Petrol Sci 107:197–205CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ekaterina A. Matrosova
    • 1
    Email author
  • Andrey V. Bobrov
    • 2
  • Luca Bindi
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry RASMoscowRussia
  2. 2.Department of GeologyMoscow State UniversityMoscowRussia
  3. 3.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations