Skip to main content

On the Periodic Ricker Equation

  • Conference paper
  • First Online:
Book cover Nonlinear Analysis and Boundary Value Problems (NABVP 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 292))

Abstract

Switching systems have recently used to model phenomena from Biology, Economy, Physics...They consist on the iteration of a finite number of maps. In this paper we consider periodic systems and analyze the dynamics of the periodic Ricker equation of period two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Plus perhaps a fixed point at the boundary of the interval or a two-periodic orbit consisting of both endpoints of the interval.

  2. 2.

    Dinaburg [15] gave simultaneously a Bowen like definition for continuous maps on a compact metric space.

  3. 3.

    Since Smale’s work (see [25]), horseshoes have been in the core of chaotic dynamics, describing what we could call random deterministic systems.

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  MathSciNet  Google Scholar 

  2. Alsedà, Ll., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One. Advances Series in Nonlinear Dynamics, vol. 5. World Scientific Publishing Co. Inc., River Edge (1993)

    Google Scholar 

  3. AlSharawi, Z., Angelos, J., Elaydi, S., Rakesh, L.: An extension of Sharkovsky’s theorem to periodic difference equations. J. Math. Anal. Appl. 316, 128–141 (2006)

    Article  MathSciNet  Google Scholar 

  4. Alves, J.F.: What we need to find out the periods of a periodic difference equation. J. Differ. Equ. Appl. 15, 833–847 (2009)

    Article  MathSciNet  Google Scholar 

  5. Balibrea, F., Cánovas, J.S., Jiménez López, V.: Commutativity and non-commutativity of topological sequence entropy. Annales de l’Institut Fourier 49, 1693–1709 (1999)

    Article  MathSciNet  Google Scholar 

  6. Block, L., Keesling, J.: Computing the topological entropy of maps of the interval with three monotone pieces. J. Stat. Phys. 66, 755–774 (1992)

    Article  MathSciNet  Google Scholar 

  7. Block, L., Keesling, J., Li, S.H., Peterson, K.: An improved algorithm for computing topological entropy. J. Stat. Phys. 55, 929–939 (1989)

    Article  MathSciNet  Google Scholar 

  8. Bowen, R.: Entropy for group endomorphism and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  MathSciNet  Google Scholar 

  9. Cánovas, J.S., Linero, A.: Periodic structure of alternating continuous interval maps. J. Differ. Equ. Appl. 12, 847–858 (2006)

    Article  MathSciNet  Google Scholar 

  10. Cánovas, J.S., Muñoz, M.: Revisiting Parrondo’s paradox for the logistic family. Fluctuation Noise Lett. 12, 1350015 (2013)

    Article  Google Scholar 

  11. Cánovas, J.S., Muñoz-Guillermo, M.: Computing topological entropy for periodic sequences of unimodal maps. Commun. Nonlinear Sci. Numer. Simul. 19, 3119–3127 (2014)

    Article  MathSciNet  Google Scholar 

  12. Cánovas, J.S., Linero, A., Peralta-Salas, D.: Dynamic Parrondo’s paradox. Phys. D 218, 177–184 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cushing, J., Henson, S.: The effect of periodic habit fluctuations on a nonlinear insect population model. J. Math. Biol. 36, 201–226 (1997)

    Article  MathSciNet  Google Scholar 

  14. Dana, R.A., Montrucchio, L.: Dynamic complexity in duopoly games. J. Econ. Theory 44, 40–56 (1986)

    Article  MathSciNet  Google Scholar 

  15. Dinaburg, E.I.: The relation between topological entropy and metric entropy. Soviet Math. 11, 13–16 (1970)

    MATH  Google Scholar 

  16. Kolyada, S., Snoha, L’.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4, 205–233 (1996)

    Google Scholar 

  17. Kornadt, O., Linz, S.J., Lucke, M.: Ricker model: influence of periodic and stochastic parametric modulation. Phys. Rev. A 44, 940–955 (1991)

    Article  Google Scholar 

  18. Liz, E.: How to control chaotic behaviour and population size with proportional feedback. Phys. Lett. A 374, 725–728 (2010)

    Article  MathSciNet  Google Scholar 

  19. Liz, E.: On the global stability of periodic Ricker maps. Electron. J. Qual. Theory Differ. Equ. 76, 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  20. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  Google Scholar 

  21. Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MATH  Google Scholar 

  22. Sacker, R.J.: A note on periodic Ricker maps. J. Differ. Equ. Appl. 13, 89–92 (2007)

    Article  MathSciNet  Google Scholar 

  23. Sacker, R.J., von Bremen, H.F.: A conjecture on the stability of the periodic solutions of Ricker’s equation with periodic parameters. Appl. Math. Comput. 217, 1213–1219 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Singer, D.: Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35, 260–267 (1978)

    Article  MathSciNet  Google Scholar 

  25. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  26. Thunberg, H.: Periodicity versus chaos in one-dimensional dynamics. SIAM Rev. 43, 3–30 (2001)

    Article  MathSciNet  Google Scholar 

  27. van Strien, S., Vargas, E.: Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc. 17, 749–782 (2004)

    Article  MathSciNet  Google Scholar 

  28. Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

    Book  Google Scholar 

Download references

Acknowledgements

I wish to thank the anonymous referees for their useful comments and suggestions that help me to improve the paper.

This work has been supported by the grant MTM 2017-84079-P Agencia Estatal de Investigación (AEI) y Fondo Europeo de Desarrollo Regional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose S. Cánovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cánovas, J.S. (2019). On the Periodic Ricker Equation. In: Area, I., et al. Nonlinear Analysis and Boundary Value Problems . NABVP 2018. Springer Proceedings in Mathematics & Statistics, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-030-26987-6_8

Download citation

Publish with us

Policies and ethics