Skip to main content

A Variational Analogue of Krasnoselskii’s Cone Fixed Point Theory

  • Conference paper
  • First Online:
Nonlinear Analysis and Boundary Value Problems (NABVP 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 292))

Abstract

Based on Ekeland’s principle, a variational analogue of Krasnoselskii’s cone compression-expansion fixed point theorem is presented. A general scheme of applications to semilinear equations making use of Mikhlin’s variational theory on positive linear operators is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulaiki, H., Moussaoui, T., Precup, R.: Multiple positive solutions for a second-order boundary value problem on the half-line. J. Nonlinear Funct. Anal. 2017, Article 17, 1–25 (2017). https://doi.org/10.23952/jnfa.2017.17

  2. Bunoiu, R., Precup, R., Varga, C.: Multiple positive standing wave solutions for Schrödinger equations with oscillating state-dependent potentials. Commun. Pure Appl. Anal. 16, 953–972 (2017). https://doi.org/10.3934/cpaa.2017046

    Article  MathSciNet  MATH  Google Scholar 

  3. Cabada, A., Precup, R., Saavedra, L., Tersian, S.: Multiple positive solutions to a fourth-order boundary value problem. Electron. J. Differ. Equ. 2016(254), 1–18 (2016). https://ejde.math.txstate.edu/Volumes/2016/254/abstr.html

  4. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21593-8

    Book  Google Scholar 

  5. Krasnoselskii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964). (OCoLC)1316344

    Google Scholar 

  6. Kwong, M.K.: On Krasnoselskii’s cone fixed point theorem. Fixed Point Theor. Appl. 2008, Article 164537, 1–18 (2008). https://doi.org/10.1155/2008/164537

    Article  MathSciNet  Google Scholar 

  7. Lisei, H., Precup, R., Varga, C.: A Schechter type critical point result in annular conical domains of a Banach space and applications. Discret. Contin. Dyn. Syst. 36, 3775–3789 (2016). https://doi.org/10.3934/dcds.2016.36.3775

    Article  MathSciNet  MATH  Google Scholar 

  8. Michlin, S.G.: Partielle Differentialgleichungen in der Mathematischen Physik. Verlag Harri Deutch, Frankfurt (1978). https://katalog.ub.uni-heidelberg.de/titel/65653127

  9. Precup, R.: Critical point theorems in cones and multiple positive solutions of elliptic problems. Nonlinear Anal. 75, 834–851 (2012). https://doi.org/10.1016/j.na.2011.09.016

    Article  MathSciNet  Google Scholar 

  10. Precup, R.: Abstract weak Harnack inequality, multiple fixed points and p-Laplace equations. J. Fixed Point Theor. Appl.12, 193–206 (2012). https://doi.org/10.1007/s11784-012-0091-2

    Article  MathSciNet  Google Scholar 

  11. Precup, R.: On a bounded critical point theorem of Schechter. Studia Univ. Babeş–Bolyai Math. 58, 87–95 (2013). http://www.cs.ubbcluj.ro/~studia-m/2013-1/10-Precup-final2.pdf

  12. Precup, R.: Critical point localization theorems via Ekeland’s variational principle. Dyn. Syst. Appl. 22, 355–370 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Precup, R.: Multiple periodic solutions with prescribed minimal period to second-order Hamiltonian systems. Dyn. Syst. 29, 424–438 (2014). https://doi.org/10.1080/14689367.2014.911410

    Article  MathSciNet  Google Scholar 

  14. Precup, R.: A critical point theorem in bounded convex sets and localization of Nash-type equilibria of nonvariational systems. J. Math. Anal. Appl. 463, 412–431 (2018). https://doi.org/10.1016/j.jmaa.2018.03.035

    Article  MathSciNet  Google Scholar 

  15. Precup, R., Varga, C.: Localization of positive critical points in Banach spaces and applications. Topol. Methods Nonlinear Anal. 49, 817–833 (2017). https://doi.org/10.12775/TMNA.2017.011

    Article  MathSciNet  MATH  Google Scholar 

  16. Precup, R., Pucci, P., Varga, C.: A three critical points result in a bounded domain of a Banach space and applications. Differ. Integral Equ. 30, 555–568 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Schechter, M.: Linking Methods in Critical Point Theory. Birkhäuser, Basel (1999). https://doi.org/10.1007/978-1-4612-1596-7

    Book  Google Scholar 

  18. Struwe, M.: Variational Methods. Springer, Berlin (1990). https://doi.org/10.1007/978-3-662-02624-3

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks the referee for careful reading of the manuscript and helpful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Precup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Precup, R. (2019). A Variational Analogue of Krasnoselskii’s Cone Fixed Point Theory. In: Area, I., et al. Nonlinear Analysis and Boundary Value Problems . NABVP 2018. Springer Proceedings in Mathematics & Statistics, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-030-26987-6_1

Download citation

Publish with us

Policies and ethics