Skip to main content

Geometric Numerical Methods with Lie Groups

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

  • 1695 Accesses

Abstract

Due to the increasing demands for modeling large-scale and complex systems, designing optimal controls, and conducting optimization tasks, many real-world applications require sophisticated models. Geometric methods are designed to capture the underlying structure of the system at hand and to preserve the global qualitative or geometric properties of the flow, such as symplecticity, volume preservation and symmetry. A survey on three of such structure preserving numerical methods is proposed in the present article. Testing the validity of such simulations is achieved by exhibiting analytically solvable models and comparing the result of simulations with their exact behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we made the assumption that is invertible, which is the case for SO(3) whenever \(\Vert \varOmega \Vert <\pi \).

  2. 2.

    At least four since many generating functions can be constructed.

References

  1. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, New York (2013)

    Google Scholar 

  2. Channell, P.J., Scovel, C.: Symplectic integration of hamiltonian systems. Nonlinearity 3(2), 231 (1990)

    Article  MathSciNet  Google Scholar 

  3. de Diego, D.M.: Lie-Poisson integrators. arXiv e-prints arXiv:1803.01427, March 2018

  4. Demoures, F., Gay-Balmaz, F., Kobilarov, M., Ratiu, T.S.: Multisymplectic lie group variational integrator for a geometrically exact beam in R3. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3492–3512 (2014)

    Article  MathSciNet  Google Scholar 

  5. Demoures, F., Gay-Balmaz, F., Ratiu, T.S.: Multisymplectic variational integrators and space/time symplecticity. Anal. Appl. 14(03), 341–391 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ge, Z., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133(3), 134–139 (1988)

    Article  MathSciNet  Google Scholar 

  7. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-30666-8

    Book  MATH  Google Scholar 

  8. Li, S.T., Qin, M.: A note for Lie-Poisson Hamilton-Jacobi equation and Lie-Poisson integrator. Comput. Math. Appl. 30(7), 67–74 (1995)

    Article  MathSciNet  Google Scholar 

  9. Marsden, J.E., Pekarsky, S., Shkoller, S.: Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12(6), 1647–1662 (1999)

    Article  MathSciNet  Google Scholar 

  10. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  11. Marsen, J., Ratiu, T.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts in Applied Mathematics, vol. 17. Springer, New York (1994). https://doi.org/10.1007/978-0-387-21792-5

    Book  Google Scholar 

  12. Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29(1), 115–127 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Bensoam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bensoam, J., Carré, P. (2019). Geometric Numerical Methods with Lie Groups. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics