Skip to main content

Riemannian Distance and Diameter of the Space of Probability Measures and the Parametrix

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

Abstract

Information geometry of the space \({\mathcal {P}}(M)\) of probability measures defined on a compact smooth Riemannian manifold M and equipped with Fisher metric G, is investigated from the viewpoint of Riemannian geometry. The function \(\ell \,:\, {\mathcal {P}}(M)\times {\mathcal {P}}(M)\rightarrow [0,\pi )\) associated to the geometric mean of two probability measures is introduced. From the formulae of Levi-Civita geodesics the Riemannian distance \(d(\cdot ,\cdot )\) of \(({\mathcal {P}}(M),G)\) is exactly given by \(\ell (\cdot ,\cdot )\). By applying the parametrix \(H(x,x_0;t)\) of the heat kernel of M it is shown that the diameter D satisfies \(D= \pi \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Information Geometry and its Applications. Applied Mathematical Sciences, vol. 194. Springer, Cham (2016). https://doi.org/10.1007/978-4-431-55978-8

    Book  MATH  Google Scholar 

  2. Amari, S., Nagaoka, H.: Methods of Information Geometry, Translations of Mathematical Monographs, vol. 191. AMS, Oxford (2000)

    Google Scholar 

  3. Bauer, M., Bruveris, M., Michor, P.W.: Uniqueness of the Fisher-Rao metric on the space of smooth densities. Bull. London Math. Soc. 48, 499–506 (2016)

    Article  MathSciNet  Google Scholar 

  4. Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Lecture Notes, vol. 194. Springer-Verlag, Berlin (1971). https://doi.org/10.1007/BFb0064643

    Book  MATH  Google Scholar 

  5. Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Stat. Math. 59, 27–56 (2007)

    Article  MathSciNet  Google Scholar 

  6. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  7. Friedrich, T.: Die Fisher-Information und symplektische Strukturen. Math. Nachr. 153, 273–296 (1991)

    Article  MathSciNet  Google Scholar 

  8. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 2nd edn. Springer-Verlag, Berlin (1993). https://doi.org/10.1007/978-3-642-97242-3

    Book  MATH  Google Scholar 

  9. Itoh, M., Satoh, H.: Geometry of Fisher information metric and the barycenter map. Entropy 17, 1814–1849 (2015)

    Article  MathSciNet  Google Scholar 

  10. Itoh, M., Satoh, H.: Information geometry of the space of probability measures and barycenter maps. Sugaku 69, 387–406 (2017). (in Japanese. English version is to appear in Sugaku Expositions, AMS)

    MathSciNet  Google Scholar 

  11. Itoh, M., Satoh, H.: Geometric mean of probability measures and geodesics of Fisher information metric. arXiv:1708.07211, submitted

  12. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    Book  Google Scholar 

  13. Nikulin, M.S.: Hellinger distance, in Encyclopedia of Mathematics, Springer. http://www.encyclopediaofmath.org/index.php?title=Hellinger_distance&oldid=16453

  14. Ohara, A.: Geodesics for dual connections and means on symmetric cones. Integr. Equ. Oper. Theor. 50, 537–548 (2004)

    Article  MathSciNet  Google Scholar 

  15. Pistone, Giovanni: Nonparametric information geometry. In: Nielsen, Frank, Barbaresco, Frédéric (eds.) GSI 2013. LNCS, vol. 8085, pp. 5–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40020-9_3

    Chapter  MATH  Google Scholar 

  16. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 23, 1543–1561 (1995)

    Article  MathSciNet  Google Scholar 

  17. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)

    MathSciNet  MATH  Google Scholar 

  18. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. A.M.S. Providence, Oxford (1996)

    Book  Google Scholar 

  19. Santacroce, M., Siri, P., Trivellato, B.: New results on mixture and exponential models by Orlicz spaces. Bernoulli 22, 1431–1447 (2016)

    Article  MathSciNet  Google Scholar 

  20. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. Intern. Press, Boston (1994)

    MATH  Google Scholar 

  21. Schwartz, L.: Séminaire SCHWARTZ, \(2^{\grave{e}me}\) année, 1954/1955. Faculté des Sciences de Paris, Paris (1955)

    Google Scholar 

  22. Szabó, Z.: The Lichnerowicz conjecture on harmonic manifolds. J. Differential Geom. 31, 1–28 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Itoh, M., Satoh, H. (2019). Riemannian Distance and Diameter of the Space of Probability Measures and the Parametrix. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics