Skip to main content

Hierarchical Attention Network for Predicting DNA-Protein Binding Sites

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Discovering DNA-protein binding sites, also known as motif discovery, is the foundation for further analyses of transcription factors (TFs). Deep learning algorithms such as convolutional neural networks (CNN) and recurrent neural networks (RNN) are introduced to motif discovery task and have achieved state-of–art performance. However, these methods still have limitations such as neglecting the context information in large-scale sequencing data. Thus, inspired by the similarity between DNA sequence and human language, in this paper we propose a hierarchical attention network for predicting DNA-protein binding sites which is based on a natural language processing method for document classification. The proposed method is tested on real ChIP-seq datasets and the experimental results show a considerable improvement compared with two well-tested deep learning-based sequence model, DeepBind and Deepsea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambert, S.A., et al.: The human transcription factors. Cell 172, 650–665 (2018)

    Article  Google Scholar 

  2. Huang, D.-S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19, 2099–2115 (2008)

    Article  Google Scholar 

  3. Bao, W., Huang, Z., Yuan, C.-A., Huang, D.-S.: Pupylation sites prediction with ensemble classification model. Int. J. Data Min. Bioinform. 18, 91–104 (2017)

    Article  Google Scholar 

  4. Deng, S.-P., Zhu, L., Huang, D.-S.: Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 13, 27–35 (2016)

    Article  Google Scholar 

  5. Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., Luscombe, N.M.J.N.R.G.: A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252 (2009)

    Article  Google Scholar 

  6. Huang, D.-S., Zhang, L., Han, K., Deng, S., Yang, K., Zhang, H.: Prediction of protein-protein interactions based on protein-protein correlation using least squares regression. Curr. Protein Pept. Sci. 15, 553–560 (2014)

    Article  Google Scholar 

  7. Elnitski, L., Jin, V.X., Farnham, P.J., Jones, S.J.J.G.R.: Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res. 16, 1455–1464 (2006)

    Article  Google Scholar 

  8. Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep III, P.W., Bulyk, M.L.J.N.B.: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429 (2006)

    Article  Google Scholar 

  9. Stormo, G.D.J.B.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)

    Article  Google Scholar 

  10. Weirauch, M.T., et al.: Evaluation of methods for modeling transcription factor sequence specificity. Nat. Biotechnol. 31, 126 (2013)

    Article  Google Scholar 

  11. Furey, T.S.J.N.R.G.: ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13, 840 (2012)

    Article  Google Scholar 

  12. Yu, H.-J., Huang, D.-S.: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 10, 457–467 (2013)

    Article  Google Scholar 

  13. Zhu, L., Deng, S.-P., Huang, D.-S.: A two-stage geometric method for pruning unreliable links in protein-protein networks. IEEE Trans. Nanobiosci. 14, 528–534 (2015)

    Article  Google Scholar 

  14. Bao, W., Jiang, Z., Huang, D.-S.: Novel human microbe-disease association prediction using network consistency projection. BMC Bioinform. 18, 543 (2017)

    Article  Google Scholar 

  15. Liu, B., Li, K., Huang, D.-S., Chou, K.-C.: iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics 34(22), 3835–3842 (2018)

    Article  Google Scholar 

  16. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.J.N.B.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831 (2015)

    Article  Google Scholar 

  17. Shen, Z., Zhang, Y.-H., Han, K., Nandi, A.K., Honig, B., Huang, D.-S.: miRNA-disease association prediction with collaborative matrix factorization. Complexity 2017, 9 (2017)

    Google Scholar 

  18. Zhu, L., Guo, W.-L., Deng, S.-P., Huang, D.-S.: ChIP-PIT: enhancing the analysis of ChIP-Seq data using convex-relaxed pair-wise interaction tensor decomposition. IEEE/ACM Trans. Comput. Biol. Bioinform. 13, 55–63 (2016)

    Article  Google Scholar 

  19. Zhou, J., Troyanskaya, O.G.J.N.M.: Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12, 931 (2015)

    Article  Google Scholar 

  20. Huang, D.-S., Jiang, W.: A general CPL-AdS methodology for fixing dynamic parameters in dual environments. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42, 1489–1500 (2012)

    Google Scholar 

  21. Le, N.Q.K., Yapp, E.K.Y., Ho, Q.-T., Nagasundaram, N., Ou, Y.-Y., Yeh, H.-Y.J.A.B.: iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem. 571, 53–61 (2019)

    Article  Google Scholar 

  22. Asgari, E., Mofrad, M.R.J.P.O.: Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS One 10, e0141287 (2015)

    Article  Google Scholar 

  23. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)

    Google Scholar 

  24. Fletez-Brant, C., Lee, D., McCallion, A.S., Beer, M.A.J.N.A.R.: kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets. Nucleic Acids Res. 41, W544–W556 (2013)

    Article  Google Scholar 

  25. Orenstein, Y., Shamir, R.J.N.A.R.: A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data. Nucleic Acids Res. 42, e63–e63 (2014)

    Article  Google Scholar 

  26. Lee, D., et al.: A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. 47, 955 (2015)

    Article  Google Scholar 

  27. Yao, Z., MacQuarrie, K.L., Fong, A.P., Tapscott, S.J., Ruzzo, W.L., Gentleman, R.C.J.B.: Discriminative motif analysis of high-throughput dataset. Bioinformatics 30, 775–783 (2013)

    Article  Google Scholar 

  28. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.J.B.: Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics 32, i121–i127 (2016)

    Article  Google Scholar 

  29. Fawcett, T.J.P.R.L.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  30. Zhu, L., Zhang, H.-B., Huang, D.-S.: Direct AUC optimization of regulatory motifs. Bioinformatics 33, i243–i251 (2017)

    Article  Google Scholar 

  31. Aslam, J.A., Yilmaz, E., Pavlu, V.: A geometric interpretation of r-precision and its correlation with average precision. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 573–574. ACM

    Google Scholar 

  32. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the National Science Foundation of China, Nos. 61861146002, 61520106006, 61772370, 61873270, 61702371, 61672382, 61672203, 61572447, 61772357, and 61732012, China Post-doctoral Science Foundation Grant, No. 2017M611619, and supported by “BAGUI Scholar” Program and the Scientific & Technological Base and Talent Special Program, GuiKe AD18126015 of the Guangxi Zhuang Autonomous Region of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, W., Yuan, CA., Qin, X., Huang, ZK., Shang, L. (2019). Hierarchical Attention Network for Predicting DNA-Protein Binding Sites. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics