Skip to main content

A Gated Recurrent Unit Model for Drug Repositioning by Combining Comprehensive Similarity Measures and Gaussian Interaction Profile Kernel

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Drug repositioning can find new uses for existing drugs and accelerate the processing of new drugs research and developments. It is noteworthy that the number of successful drug repositioning stories is increasing rapidly. Various computational methods have been presented to predict novel drug-disease associations for drug repositioning based on similarity measures among drugs and diseases or heterogeneous networks. However, there are some known associations between drugs and diseases that previous studies not utilized. In this work, we proposed a GRU model to predict potential drug-disease interactions by using comprehensive similarity. 10-fold cross-validation and common evaluation indicators are used to evaluate the performance of our model. Our model outperformed existing methods. The experimental results proved our model is a useful tool for drug repositioning and biochemical medicine research.

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discovery 3, 673 (2004)

    Article  Google Scholar 

  2. Booth, B., Zemmel, R.: Prospects for productivity. Nat. Rev. Drug Discovery 3, 451 (2004)

    Article  Google Scholar 

  3. Dudley, J.T., Deshpande, T., Butte, A.J.: Exploiting drug–disease relationships for computational drug repositioning. Brief. Bioinform. 12(4), 303–311 (2011)

    Article  Google Scholar 

  4. Nagaraj, A.B., et al.: Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene 37(3), 403–414 (2018)

    Article  Google Scholar 

  5. Luo, H., et al.: Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics 32(17), 2664 (2016)

    Article  Google Scholar 

  6. Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., Wang, J.: Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 34(11), 1904–1912 (2018)

    Article  Google Scholar 

  7. Tartaglia, L.A.: Complementary new approaches enable repositioning of failed drug candidates. Expert Opin. Investig. Drugs 15(11), 1295–1298 (2006)

    Article  Google Scholar 

  8. Chen, X., et al.: NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. Database 2017 (2017)

    Google Scholar 

  9. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(suppl_1), D355–D360 (2009)

    Article  Google Scholar 

  10. Hamosh, A., Scott, A.F., Amberger, J., Bocchini, C., Valle, D., Mckusick, V.A.: Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(1), 514–517 (2005)

    Google Scholar 

  11. Lamb, J., et al.: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795), 1929–1935 (2006)

    Article  Google Scholar 

  12. Knox, C., et al.: DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res. 39, 1035 (2011). (Database issue)

    Article  Google Scholar 

  13. Kuhn, M., et al.: STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res. 42, 401–407 (2014). (Database issue)

    Article  Google Scholar 

  14. Gaulton, A., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, 1100–1107 (2012)

    Article  Google Scholar 

  15. Meng, F.-R., You, Z.-H., Chen, X., Zhou, Y., An, J.-Y.: Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures. Molecules 22(7), 1119 (2017)

    Article  Google Scholar 

  16. Luo, H, et al.: DRAR-CPI a server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome. Nucleic Acids Res. 39(suppl_2), W492–W498 (2011)

    Article  Google Scholar 

  17. Chiang, A.P., Butte, A.J.: Systematic evaluation of drug–disease relationships to identify leads for novel drug uses. Clin. Pharmacol. Ther. 86(5), 507–510 (2009)

    Article  Google Scholar 

  18. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7(1), 496 (2011)

    Article  Google Scholar 

  19. Francesco, N., et al.: Drug repositioning: a machine-learning approach through data integration. J. Cheminform. 5(1), 30 (2013)

    Article  Google Scholar 

  20. Iorio, F., et al.: Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. 107(33), 14621–14626 (2010)

    Article  Google Scholar 

  21. Cheng, F., et al.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)

    Article  Google Scholar 

  22. Wu, C., Gudivada, R.C., Aronow, B.J., Jegga, A.G.: Computational drug repositioning through heterogeneous network clustering. BMC Syst. Biol. 7(5), 1–9 (2013)

    Google Scholar 

  23. Wang, W., Yang, S., Zhang, X., Li, J.: Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20), 2923–2930 (2014)

    Article  Google Scholar 

  24. Martínez, V., Navarro, C., Cano, C., Fajardo, W., Blanco, A.: DrugNet: network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med. 63(1), 41–49 (2015)

    Article  Google Scholar 

  25. Yi, H.-C., You, Z.-H., Huang, D.-S., Li, X., Jiang, T.-H., Li, L.-P.: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther. - Nucleic Acids 11, 337–344 (2018)

    Article  Google Scholar 

  26. You, Z.-H., Zhan, Z.-H., Li, L.-P., Zhou, Y., Yi, H.-C.: Accurate prediction of ncRNA-protein interactions from the integration of sequence and evolutionary information. Front. Genet. 9, 458 (2018)

    Article  Google Scholar 

  27. Wishart, D.S., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, 901–906 (2008). (Database issue)

    Article  Google Scholar 

  28. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The Chemistry Development Kit (CDK): an open-source java library for chemo-and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)

    Article  Google Scholar 

  29. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  30. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1), e1000641 (2010)

    Article  MathSciNet  Google Scholar 

  31. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9(5), 471 (2012)

    Article  Google Scholar 

  32. Yu, L., Huang, J., Ma, Z., Zhang, J., Zou, Y., Gao, L.: Inferring drug-disease associations based on known protein complexes. BMC Med. Genomics 8(2), S2 (2015)

    Article  Google Scholar 

  33. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Article  Google Scholar 

  34. Chen, X., et al.: A novel computational model based on super-disease and miRNA for potential miRNA–disease association prediction. Mol. BioSyst. 13(6), 1202–1212 (2017)

    Article  Google Scholar 

  35. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  36. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)

    Google Scholar 

  37. Shen, Z., Bao, W., Huang, D.-S.: Recurrent neural network for predicting transcription factor binding sites. Scientific Rep. 8(1), 15270 (2018)

    Article  Google Scholar 

  38. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint. arXiv:14091259 (2014)

  39. Chung J, Gulcehre C, Cho K, Bengio Y: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint. arXiv:14123555 (2014)

  40. Yi, H.-C., et al.: ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high efficiency feature representation. Mol. Ther.- Nucleic Acids (2019)

    Google Scholar 

  41. Wang, L., et al.: MTRDA: using logistic model tree to predict miRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput. Biol. 15(3), e1006865 (2019)

    Article  MathSciNet  Google Scholar 

  42. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Wong, L., Yi, H.-C.: Prediction of self-interacting proteins from protein sequence information based on random projection model and fast fourier transform. Int. J. Mol. Sci. 20(4), 930 (2019)

    Article  Google Scholar 

  43. Chen, Z.-H., Li, L.-P., He, Z., Zhou, J.-R., Li, Y., Wong, L.: An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Front. Genet. 10 (2019)

    Google Scholar 

  44. Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., Cheng, L.: DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272, 638–646 (2018)

    Article  Google Scholar 

  45. You, Z.-H., Huang, W., Zhang, S., Huang, Y.-A., Yu, C.-Q., Li, L.-P.: An efficient ensemble learning approach for predicting protein-protein interactions by integrating protein primary sequence and evolutionary information. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(3), 809–817 (2018)

    Article  Google Scholar 

  46. Wang, Y.-B., You, Z.-H., Li, X., Jiang, T.-H., Cheng, L., Chen, Z.-H.: Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Syst. Biol. 12(8), 129 (2018)

    Article  Google Scholar 

  47. Wang, Y., et al.: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity 2018 (2018)

    Google Scholar 

  48. Wang, L., et al.: Using two-dimensional principal component analysis and rotation forest for prediction of protein-protein interactions. Scientific Rep. 8(1), 12874 (2018)

    Article  Google Scholar 

  49. Wang, L., et al.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft. Comput. 22(10), 3373–3381 (2018)

    Article  Google Scholar 

  50. Wang, L., You, Z.-H., Huang, D.-S., Zhou, F.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA Interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018)

    Google Scholar 

  51. Wang, L., et al.: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25(3), 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  52. Song, X.-Y., Chen, Z.-H., Sun, X.-Y., You, Z.-H., Li, L.-P., Zhao, Y.: An ensemble classifier with random projection for predicting protein-protein interactions using sequence and evolutionary information. Appl. Sci. 8(1), 89 (2018)

    Article  Google Scholar 

  53. Qu, J., et al.: In silico prediction of small molecule-miRNA associations based on HeteSim algorithm. Mol. Ther.-Nucleic Acids (2018)

    Google Scholar 

  54. Qu, J., Chen, X., Sun, Y.Z., Li, J.Q., Ming, Z.: Inferring potential small molecule–miRNA association based on triple layer heterogeneous network. J. Cheminform. 10(1), 30 (2018)

    Article  Google Scholar 

  55. Luo, X., Zhou, M., Li, S., Xia, Y., You, Z.-H., Zhu, Q., Leung, H.: Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)

    Article  Google Scholar 

  56. Li, L.-P., Wang, Y.-B., You, Z.-H., Li, Y., An, J.-Y.: PCLPred: a bioinformatics method for predicting protein-protein interactions by combining relevance vector machine model with low-rank matrix approximation. Int. J. Mol. Sci. 19(4), 1029 (2018)

    Article  Google Scholar 

  57. Huang, Y.-A., You, Z.-H., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 19(5), 468–478 (2018)

    Article  Google Scholar 

  58. Chen, X., Zhang, D.-H., You, Z.-H.: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med. 16(1), 348 (2018)

    Article  Google Scholar 

  59. Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z.-H., Liu, H.: BNPMDA: bipartite network projection for miRNA–disease association prediction. Bioinformatics 1, 9 (2018)

    Google Scholar 

  60. Chen, X., Wang, C.-C., Yin, J., You, Z.-H.: Novel human miRNA-disease association inference based on random forest. Mol. Ther.-Nucleic Acids 13, 568–579 (2018)

    Article  Google Scholar 

  61. Chen, X., Gong, Y., Zhang, D.H., You, Z.H., Li, Z.W.: DRMDA: deep representations-based miRNA–disease association prediction. J. Cell Mol. Med. 22(1), 472–485 (2018)

    Article  Google Scholar 

  62. Zhu, L., Deng, S.-P., You, Z.-H., Huang, D.-S.: Identifying spurious interactions in the protein-protein interaction networks using local similarity preserving embedding. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(2), 345–352 (2017)

    Article  Google Scholar 

  63. Zhu, H.-J., Jiang, T.-H., Ma, B., You, Z.-H., Shi, W.-L., Cheng, L.: HEMD: a highly efficient random forest-based malware detection framework for Android. Neural Comput. Appl. 30(11), 1–9 (2017)

    Google Scholar 

  64. Zhang, S., Zhu, Y., You, Z., Wu, X.: Fusion of superpixel, expectation maximization and PHOG for recognizing cucumber diseases. Comput. Electron. Agric. 140, 338–347 (2017)

    Article  Google Scholar 

  65. Zhang, S., Zhang, C., Zhu, Y., You, Z.: Discriminant WSRC for large-scale plant species recognition. Computational intelligence and neuroscience, 2017, (2017)

    Google Scholar 

  66. Zhang, S., You, Z., Wu, X.: Plant disease leaf image segmentation based on superpixel clustering and EM algorithm. Neural Comput. Appl. 31, 1225–1232 (2019)

    Article  Google Scholar 

  67. Zhang, S., Wu, X., You, Z., Zhang, L.: Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 134, 135–141 (2017)

    Article  Google Scholar 

  68. Zhang, S., Wu, X., You, Z.: Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition. PLoS ONE 12(6), e0178317 (2017)

    Article  Google Scholar 

  69. You, Z.-H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  70. You, Z.-H., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8(49), 85568 (2017)

    Article  Google Scholar 

  71. You, Z.-H., et al.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3), e1005455 (2017)

    Article  Google Scholar 

  72. You, Z.H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)

    Article  Google Scholar 

  73. Wen, Y.-T., Lei, H.-J., You, Z.-H., Lei, B.-Y., Chen, X., Li, L.-P.: Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. J. Theor. Biol. 430, 9–20 (2017)

    Article  MATH  Google Scholar 

  74. Wang, Y.-B., You, Z.-H., Li, L.-P., Huang, Y.-A., Yi, H.-C.: Detection of interactions between proteins by using legendre moments descriptor to extract discriminatory information embedded in pssm. Molecules 22(8), 1366 (2017)

    Article  Google Scholar 

  75. Wang, Y.B., et al.: Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  76. Wang, Y., You, Z., Li, X., Chen, X., Jiang, T., Zhang, J.: PCVMZM: using the probabilistic classification vector machines model combined with a zernike moments descriptor to predict protein-protein interactions from protein sequences. Int. J. Mol. Sci. 18(5), 1029 (2017)

    Article  Google Scholar 

  77. Wang, L., et al.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  78. Wang, L., et al.: Computational methods for the prediction of drug-target interactions from drug fingerprints and protein sequences by stacked auto-encoder deep neural network. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 46–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_5

    Chapter  Google Scholar 

  79. Li, S., Zhou, M., Luo, X., You, Z.-H.: Distributed winner-take-all in dynamic networks. IEEE Trans. Automat. Contr. 62(2), 577–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  80. Li, J.-Q., You, Z.-H., Li, X., Ming, Z., Chen, X.: PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(5), 1165–1172 (2017)

    Article  Google Scholar 

  81. Chen, X., Xie, D., Zhao, Q., You, Z.-H.: MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 20(2), 515–539 (2017)

    Article  Google Scholar 

  82. Luo, X., Zhou, M., Li, S., You, Z., Xia, Y., Zhu, Q.: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2016)

    Article  MathSciNet  Google Scholar 

  83. Luo, X., et al.: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)

    Article  Google Scholar 

  84. Li, S., You, Z.H., Guo, H., Luo, X., Zhao, Z.Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229 (2016)

    Article  Google Scholar 

  85. Ji, Z., Wang, B., Deng, S., You, Z.: Predicting dynamic deformation of retaining structure by LSSVR-based time series method. Neurocomputing 137, 165–172 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China, under Grants 61572506, in part by the NSFC Excellent Young Scholars Program, under Grants 61722212, in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Hai-Cheng Yi, Zhu-Hong You conceived the algorithm, carried out analyses, prepared the datasets, carried out experiments, and wrote the manuscript; Li-Ping Li, Yan-Bin Wang, Lun Hu and Leon Wong designed, performed and analyzed experiments and wrote the manuscript; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hai-Cheng Yi .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T. et al. (2019). A Gated Recurrent Unit Model for Drug Repositioning by Combining Comprehensive Similarity Measures and Gaussian Interaction Profile Kernel. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics