Skip to main content

An Effective Approach of Measuring Disease Similarities Based on the DNN Regression Model

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

  • 1456 Accesses

Abstract

A large number of biomedical ontologies are created to provide controlled vocabularies for sharing biomedical knowledge in different biomedical domains. Quantitative measurement of disease associations based on biomedical ontologies could provide supports for discovering similar diseases caused by similar molecular process, which is beneficial to improve the corresponding medical diagnosis and treatment. Therefore, we deal with the effective measure of disease similarities in this paper. In particular, we propose a novel regression model based on the deep neural network (DNN) to improve the evaluation of similarities among diseases. We firstly extract the feature vectors of disease pairs, and then train the DNN-based regression model that learns from the information of training set to simulate the complex non-linear relationship among disease pairs. Finally, a comprehensive experimental evaluation is carried out to show the advantages as a solution for measuring disease similarities in terms of the receiver operating characteristic curve (ROC) and the precision-recall curve (PRC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlicker, A., Domingues, F.S., Rahnenführer, J., Lengauer, T.: A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics 7, 302 (2006)

    Article  Google Scholar 

  2. Anand, A., Haque, M.A., Alex, J.S.R., Venkatesan, N.: Evaluation of machine learning and deep learning algorithms combined with dimentionality reduction techniques for classification of Parkinson’s disease. In: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, Louisville (2018)

    Google Scholar 

  3. Bandyopadhyay, S., Mallick, K.: A new path based hybrid measure for gene ontology similarity. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(1), 116–127 (2014)

    Article  Google Scholar 

  4. Cheng, L., Li, J., Ju, P., et al.: SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association. PLoS One 9(6), e99415 (2014)

    Article  MathSciNet  Google Scholar 

  5. Maji, D., Santara, A., Ghosh, S., Sheet, D., et al.: Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Milan (2015)

    Google Scholar 

  6. Denny, P., Feuermann, M., Hill, D.P., et al.: Exploring autophagy with gene ontology. Autophagy 14(3), 1–18 (2018)

    Article  Google Scholar 

  7. Kim, D., Kim, K.: Detection of early stage Alzheimer’s disease using EEG relative power with deep neural network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Honolulu (2018)

    Google Scholar 

  8. Lyu, G.: A review of Alzheimer’s disease classification using neuropsychological data and machine learning. In: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. IEEE, Beijing (2018)

    Google Scholar 

  9. Groza, T., Köhler, S., et al.: The human phenotype ontology: semantic unification of common and rare disease. Am. J. Hum. Genet. 97(1), 111–124 (2015)

    Article  Google Scholar 

  10. Harrow, I., et al.: Matching disease and phenotype ontologies in the ontology alignment evaluation initiative. J. Biomed. Semant. 8(1), 55 (2017)

    Article  Google Scholar 

  11. Neagae, I., Faur, D., Vaduva, C., Datcu, M.: Exploratory visual analysis of multispectral EO images based on DNN. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Valencia (2018)

    Google Scholar 

  12. Jeong, J.C., Chen, X.: A new semantic functional similarity over gene ontology. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(2), 322–334 (2015)

    Article  Google Scholar 

  13. Kibbe, W.A., Arze, C., Felix, V., et al.: Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 43(Database issue), D1071–D1078 (2015)

    Article  Google Scholar 

  14. Kim, M.H., Lee, Y.J., Lee, J.H.: Information retrieval based on conceptual distance in is - a hierarchies. J. Doc. 49(2), 188–207 (1993)

    Article  Google Scholar 

  15. Köhler, S., Doelken, S.C., Mungall, C.J., et al.: The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42(Database issue), 966–974 (2014)

    Article  Google Scholar 

  16. Köhler, S., Schulz, M.H., Krawitz, P., et al.: Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet. 85(4), 457–464 (2009)

    Article  Google Scholar 

  17. Kozaki, K., Yamagata, Y., Mizoguchi, R., et al.: Disease compass - a navigation system for disease knowledge based on ontology and linked data techniques. J. Biomed. Semant. 8(1), 22 (2017)

    Article  Google Scholar 

  18. Lee, I., Blom, U.M., Wang, P.I., et al.: Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 21(7), 1109 (2011)

    Article  Google Scholar 

  19. Lee, I., Lehner, B., Crombie, C., et al.: A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat. Genet. 40(2), 181–188 (2008)

    Article  Google Scholar 

  20. Li, B., Wang, J.Z., Feltus, F.A., et al.: Effectively integrating information content and structural relationship to improve the GO-based similarity measure between proteins, pp. 166–172 (2010)

    Google Scholar 

  21. Lin, D.: An information-theoretic definition of similarity. In: International Conference on Machine Learning, pp. 296–304 (1998)

    Google Scholar 

  22. Liu, J., Ma, Z.M., Feng, X.: Answering prdered tree pattern queries over fuzzy XML data. Knowl. Inf. Syst. 43, 473 (2015)

    Article  Google Scholar 

  23. Liu, J., Yan, D.: Answering approximate queries over XML data. IEEE Trans. Fuzzy Syst. 24(2), 288–305 (2016)

    Article  Google Scholar 

  24. Liu, J., Zhang, X., Zhang, L.: Tree pattern matching in heterogeneous fuzzy XML databases. Knowl. Based Syst. 122, 119–130 (2017)

    Article  Google Scholar 

  25. Liu, J., Zhang, X.: Efficient keyword search in fuzzy XML. Fuzzy Sets Syst. 317, 68–87 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lovering, R.C., Roncaglia, P., Howe, D.G., et al.: Improving interpretation of cardiac phenotypes and enhancing discovery with expanded knowledge in the gene ontology. Circ. Genom. Precis. Med. 11(2), e001813 (2018)

    Article  Google Scholar 

  27. Mathur, S., Dinakarpandian, D.: Finding disease similarity based on implicit semantic similarity. J. Biomed. Inform. 45(2), 363–371 (2012)

    Article  Google Scholar 

  28. Meehan, T.F., Vasilevsky, N.A., Mungall, C.J., et al.: Ontology based molecular signatures for immune cell types via gene expression analysis. BMC Bioinform. 14(1), 263 (2013)

    Article  Google Scholar 

  29. Ni, P., Wang, J., Zhong, P., et al.: Constructing disease similarity networks based on disease module theory. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018)

    Article  Google Scholar 

  30. Osborne, J.D., Flatow, J., Holko, M., et al.: Annotating the human genome with disease ontology. BMC Genom. 10(S1), S6 (2009)

    Article  Google Scholar 

  31. Forouzannezhad, P., Abbaspour, A., Li, C., Cabrerizo, M., et al.: A deep neural network approach for early diagnosis of mild cognitive impairment using multiple features. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, Orlando (2018)

    Google Scholar 

  32. Patel, S., Roncaglia, P., Lovering, R.C.: Using gene ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism. BMC Bioinform. 16(1), 186 (2015)

    Article  Google Scholar 

  33. Peng, J., Xue, H., Hui, W., et al.: An online tool for measuring and visualizing phenotype similarities using HPO. BMC Genom. 19(Suppl 6), 185–193 (2018)

    Google Scholar 

  34. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy, pp. 448–453 (1995)

    Google Scholar 

  35. Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(Database issue), 940–946 (2012)

    Article  Google Scholar 

  36. Pakhomov, S.V.S., Finley, G., McEwan, R., Wang, Y., Melton, G.B.: Corpus domain effects on distributional semantic modeling of medical terms. Bioinformatics 32(23), 3635–3644 (2016)

    Google Scholar 

  37. Wang, J.Z., Du, Z., Payattakool, R., et al.: A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10), 1274–1281 (2007)

    Article  Google Scholar 

  38. Westbury, S.K., Turro, E., Greene, D., et al.: Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med. 7(1), 36 (2015)

    Article  Google Scholar 

  39. Hu, Y., Zhou, M., Shi, H., et al.: Measuring disease similarity and predicting disease-related ncRNAs by a novel method. BMC Med. Genom. 10(Suppl 5), 71 (2017)

    Article  Google Scholar 

  40. Zhang, S., Shang, X., Wang, M., et al.: A new measure based on gene ontology for semantic similarity of genes. In: Wase International Conference on Information Engineering, pp. 85–88. IEEE Computer Society (2010)

    Google Scholar 

  41. Zhao, Y., Halang, W.: Rough concept lattice based ontology similarity measure. In: International Conference on Scalable Information Systems. Infoscale 2006, Hong Kong, p. 15. DBLP (2006)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions. The work was partially supported by the National Key R&D Program of China (2018YFC1603800, 2018YFC1603802, 2017YFC1200200 and 2017YFC1200205), National Natural Science Foundation of China (61602130 and 61872115), China Postdoctoral Science Foundation funded project (2015M581449 and 2016T90294), Heilongjiang Postdoctoral Fund (LBH-Z14089), Natural Science Foundation of Heilongjiang Province of China (QC2015067), and Fundamental Research Funds for the Central Universities (HIT.NSRIF.2017036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, S., Zhang, X., Zhang, L., Liu, J. (2019). An Effective Approach of Measuring Disease Similarities Based on the DNN Regression Model. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics