Skip to main content

CT Performance Optimization

  • Chapter
  • First Online:
Computed Tomography

Abstract

This chapter discusses the principles of optimization in CT imaging and how to target specific levels of image quality under the constraint of mitigating factors such as radiation dose. The goals are to (a) understand the theory behind imaging optimization, (b) learn about practical steps that can be taken to ensure imaging consistency across diverse CT systems, and (c) learn about practical steps that can be taken to optimize clinical performance with respect to radiation dose. These practical guides are based on analysis of both prospective phantom data and retrospective data from dose and image quality monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demb J, Chu P, Nelson T, Hall D, Seibert A, Lamba R, Boone J, Krishnam M, Cagnon C, Bostani M, Gould R, Miglioretti D, Smith-Bindman R. Optimizing radiation doses for computed tomography across institutions: dose auditing and best practices optimizing radiation doses for computed tomography across institutions optimizing radiation doses for computed tomography across institutions. JAMA Intern Med. 2017;177(6):810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kordolaimi SD, Saradeas I, Ploussi A, Pantos I, Argentos S, Efstathopoulos EP. Introduction of an effective method for the optimization of CT protocols using iterative reconstruction algorithms: comparison with patient data. AJR Am J Roentgenol. 2014;203(4):W434–9.

    Article  PubMed  Google Scholar 

  3. Trattner S, Pearson GDN, Chin C, Cody DD, Gupta R, Hess CP, Kalra MK, Kofler JM Jr, Krishnam MS, Einstein AJ. Standardization and optimization of CT protocols to achieve low dose. J Am Coll Radiol: JACR. 2014;11(3):271–8.

    Article  PubMed  Google Scholar 

  4. Zarb F, McEntee MF, Rainford L. CT radiation dose and image quality optimization using a porcine model. Radiol Technol. 2013;85(2):127–36.

    PubMed  Google Scholar 

  5. Barrett HH, Myers KJ, Hoeschen C, Kupinski MA, Little MP. Task-based measures of image quality and their relation to radiation dose and patient risk. Phys Med Biol. 2015;60(2):R1–R75. PMCID:PMC 4318357.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samei E, Jarvinen H, Kortesniemi M, Simantirakis G, Goh C, Wallace A, Vano E, Bejan A, Rehani M, Vassileva J. Medical imaging dose optimisation from ground up: expert opinion of an international summit. J Radiol Prot. 2018;38(3):967–89.

    Article  PubMed  Google Scholar 

  7. Li X, Samei E, Williams CH, Segars WP, Tward DJ, Miller MI, Ratnanather JT, Paulson EK, Frush DP. Effects of protocol and obesity on dose conversion factors in adult body CT. Med Phys. 2012;39(11):6550–71. PMCID:PMC 3482255.

    Article  PubMed  PubMed Central  Google Scholar 

  8. American Association of Physicists in Medicine. AAPM report no. 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. 2011.

    Google Scholar 

  9. Sanders J, Tian X, Segars WP, Boone J, Samei E. Automated, patient-specific estimation of regional imparted energy and dose from tube current modulated computed tomography exams across 13 protocols. J Med Imaging (Bellingham). 2017;4(1):013503. PMCID:PMC PMC5260633.

    Article  Google Scholar 

  10. International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. 2007.

    Google Scholar 

  11. Sahbaee P, Segars WP, Samei E. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories. Med Phys. 2014;41(7):072104. PMCID:PMC PMC4105960.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP. Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology. 2011;259(3):862–74. PMCID:PMC 3099041.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Samei E, Krupinski EA. The handbook of medical image perception and techniques. Cambridge, UK: Cambridge Press; 2010.

    Google Scholar 

  14. International Commission on Radiation Units and Measurements. ICRU report 54: medical imaging- the assessment of image quality. 1995.

    Google Scholar 

  15. Solomon J, Mileto A, Ramirez-Giraldo JC, Samei E. Diagnostic performance of an advanced modeled iterative reconstruction algorithm for low-contrast detectability with a third-generation dual-source multidetector CT scanner: potential for radiation dose reduction in a multireader study. Radiology. 2015;275(3):735–45.

    Article  PubMed  Google Scholar 

  16. Månsson LG. Methods for the evaluation of image quality: a review. Radiat Prot Dosim. 2000;90(1–2):89–99.

    Article  Google Scholar 

  17. Rose A. The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am. 1948;38(2):196–208.

    Article  CAS  PubMed  Google Scholar 

  18. Samei E, Richard S. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Med Phys. 2015;42(1):314–23.

    Article  PubMed  Google Scholar 

  19. Chen B, Christianson O, Wilson JM, Samei E. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods. Med Phys. 2014;41(7):071909.

    Article  PubMed  Google Scholar 

  20. Li K, Garrett J, Ge Y, Chen GH. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance. Med Phys. 2014;41(7):071911. PMCID:PMC 4106476.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Solomon JB, Samei E. Correlation between human detection accuracy and observer model-based image quality metrics in computed tomography. J Med Imaging. 2016;3:12.

    Google Scholar 

  22. Richard S, Samei E. Quantitative breast tomosynthesis: from detectability to estimability. Med Phys. 2010;37(12):6157–65. PMID: 21302772.

    Article  PubMed  Google Scholar 

  23. Zhang Y, Smitherman C, Samei E. Size-specific optimization of CT protocols based on minimum detectability. Med Phys. 2017;44(4):1301–11.

    Article  CAS  PubMed  Google Scholar 

  24. Gang GJ, Siewerdsen JH, Stayman JW. Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction. Phys Med Biol. 2017;62(12):4777–97. PMCID:PMC PMC5738673.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Solomon J, Samei E. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE. Med Phys. 2014;41(9):091908.

    Article  PubMed  Google Scholar 

  26. Samei E, Lin Y, Choudhury KR, McAdams HP. Automated characterization of perceptual quality of clinical chest radiographs: validation and calibration to observer preference. Med Phys. 2014;41(11):111918.

    Article  PubMed  Google Scholar 

  27. Christianson O, Winslow J, Frush DP, Samei E. Automated technique to measure noise in clinical CT examinations. AJR Am J Roentgenol. 2015;205(1):W93–9.

    Article  PubMed  Google Scholar 

  28. Smith TB, Solomon J, Samei E. Estimating detectability index in vivo: development and validation of an automated methodology. J Med Imaging (Bellingham). 2018;5(3):031403. PMCID:PMC PMC5724743.

    Google Scholar 

  29. Sanders J, Hurwitz L, Samei E. Patient-specific quantification of image quality: an automated method for measuring spatial resolution in clinical CT images. Med Phys. 2016;43(10):5330.

    Article  PubMed  Google Scholar 

  30. Samei E, Tian X, Paul Segars W, Frush DP. Radiation risk index for pediatric CT: a patient-derived metric. Pediatr Radiol. 2017;47(13):1737–44.

    Article  PubMed  Google Scholar 

  31. Cody DD, Fisher TS, Gress DA, Layman RR Jr, McNitt-Gray MF, Pizzutiello RJ Jr, Fairobent LA. AAPM medical physics practice guideline 1.a: CT protocol management and review practice guideline. J Appl Clin Med Phys. 2013;14(5):3–12.

    Article  PubMed  Google Scholar 

  32. ACR. CT accreditation program requirements. 2019. Available from: https://www.acraccreditation.org/-/media/ACRAccreditation/Documents/CT/Requirements.pdf?la=en.

  33. TJC. The Joint Commission Diagnostic Imaging Standards. 2015. Available from: https://www.jointcommission.org/diagnostic_imaging_standards/.

  34. AAPM. The Alliance for Quality Computed Tomography: Protocols. 2017. Available from: https://www.aapm.org/pubs/CTprotocols/default.asp.

  35. American Association of Physicists in Medicine. AAPM report no. 220: use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT. 2014.

    Google Scholar 

  36. Malkus A, Szczykutowicz TP. A method to extract image noise level from patient images in CT. Med Phys. 2017;44(6):2173–84.

    Article  PubMed  Google Scholar 

  37. American Association of Physicists in Medicine. AAPM report no. 233: performance evaluation of computed tomography systems. 2019.

    Google Scholar 

  38. Solomon J, Wilson J, Samei E. Characteristic image quality of a third generation dual-source MDCT scanner: noise, resolution, and detectability. Med Phys. 2015;42(8):4941–53.

    Article  PubMed  Google Scholar 

  39. Wilson JM, Christianson OI, Richard S, Samei E. A methodology for image quality evaluation of advanced CT systems. Med Phys. 2013;40(3):031908.

    Article  PubMed  Google Scholar 

  40. Faulkner K, Moores BM. Analysis of x-ray computed tomography images using the noise power spectrum and autocorrelation function. Phys Med Biol. 1984;29(11):1343–52.

    Article  CAS  PubMed  Google Scholar 

  41. Boedeker KL, Cooper VN, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part I. measurement of noise power spectra and noise equivalent quanta. Phys Med Biol. 2007;52(14):4027–46.

    Article  CAS  PubMed  Google Scholar 

  42. Boedeker KL, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part II. Noise power spectra and signal to noise. Phys Med Biol. 2007;52(14):4047–61.

    Article  CAS  PubMed  Google Scholar 

  43. Siewerdsen JH, Cunningham IA, Jaffray DA. A framework for noise-power spectrum analysis of multidimensional images. Med Phys. 2002;29(11):2655–71.

    Article  CAS  PubMed  Google Scholar 

  44. Yang K, Kwan AL, Huang SY, Packard NJ, Boone JM. Noise power properties of a cone-beam CT system for breast cancer detection. Med Phys. 2008;35(12):5317–27. PMCID:PMC 2736717.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Riederer SJ, Pelc NJ, Chesler DA. The noise power spectrum in computed X-ray tomography. Phys Med Biol. 1978;23(3):446–54.

    Article  CAS  PubMed  Google Scholar 

  46. Baek J, Pelc NJ. The noise power spectrum in CT with direct fan beam reconstruction. Med Phys. 2010;37(5):2074–81. PMCID:PMC 2871306.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kijewski MF, Judy PF. The noise power spectrum of CT images. Phys Med Biol. 1987;32(5):565–75.

    Article  CAS  PubMed  Google Scholar 

  48. Benitez RB, Ning R, Conover D, Liu S. NPS characterization and evaluation of a cone beam CT breast imaging system. J Xray Sci Technol. 2009;17(1):17–40.

    PubMed  Google Scholar 

  49. Chen B, Richard S, Barnhart H, Colsher JG, Maxwell A, Samei E. Volumetric quantification of lung nodule in CT: effects of reconstruction algorithm (FBP, ASiR, and MBiR), dose and slice thickness, RSNA Annual Meeting. Chicago: Radiological Society of North America; 2010.

    Google Scholar 

  50. Solomon JB, Christianson O, Samei E. Quantitative comparison of noise texture across CT scanners from different manufacturers. Med Phys. 2012;39(10):6048–55.

    Article  PubMed  Google Scholar 

  51. Winslow J, Zhang Y, Samei E. A method for characterizing and matching CT image quality across CT scanners from different manufacturers. Med Phys. 2017;44(11):5705–17.

    Article  PubMed  Google Scholar 

  52. Segars WP, Veress AI, Sturgeon GM, Samei E. Incorporation of the living heart model into the 4-D XCAT phantom for cardiac imaging research. IEEE Trans Radiat Plasma Med Sci. 2019;3(1):54–60.

    Article  PubMed  Google Scholar 

  53. Abadi E, Segars WP, Sturgeon GM, Harrawood B, Kapadia A, Samei E. Modeling “textured” bones in virtual human phantoms. IEEE Trans Radiat Plasma Med Sci. 2019;3(1):47–53.

    Article  PubMed  Google Scholar 

  54. Segars WP, Mahesh M, Beck TJ, Frey EC, Tsui BM. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008;35(8):3800–8. PMCID:PMC PMC2809711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: filtered Back projection versus a commercial model-based iterative reconstruction algorithm. Radiology. 2017;2017:161736.

    Google Scholar 

  56. Solomon J, Samei E. A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging. Phys Med Biol. 2014;59(21):6637–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Samei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solomon, J., Samei, E. (2020). CT Performance Optimization. In: Samei, E., Pelc, N. (eds) Computed Tomography . Springer, Cham. https://doi.org/10.1007/978-3-030-26957-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26957-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26956-2

  • Online ISBN: 978-3-030-26957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics