Skip to main content

CT Myocardial Perfusion Imaging

  • Chapter
  • First Online:

Abstract

Coronary artery disease (CAD) is a condition in which blood supply to the heart muscle (myocardium) is reduced as a result of plaque formation within one or more coronary arteries. CAD is one of the leading causes of morbidity and mortality in the world. Due to its high sensitivity and negative predictive value, coronary CT angiography (CCTA) is routinely used for detecting or excluding obstructive coronary artery stenosis in symptomatic patients with suspected CAD. However, anatomical assessment with CCTA alone is not sufficient to determine if a stenosis (lumen narrowing) is functionally significant (flow-limiting), which is critical for decision-making on coronary revascularization. CT myocardial perfusion imaging (CT-MPI) is a technique that can provide functional assessment of a stenosis in an epicardial coronary artery through imaging the first-pass circulation of iodinated contrast agent in the downstream myocardium. CT-MPI can be further classified into “static” or “dynamic,” depending on whether the contrast passage in the myocardium is monitored at a single or multiple time points. The merit of dynamic CT-MPI is that absolute myocardial blood flow values can be derived with advanced analytic algorithms to achieve a more reliable functional assessment of CAD. In this chapter, the theoretical basis of quantitative myocardial perfusion measurement with dynamic CT-MPI and the practical issues of implementation of CT-MPI are reviewed. Examples of clinical application of CT-MPI are also provided for illustration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology. 1980;137(3):679–86.

    Article  CAS  PubMed  Google Scholar 

  2. Obach V, et al. Multimodal CT-assisted thrombolysis in patients with acute stroke: a cohort study. Stroke. 2011;42(4):1129–31.

    Article  CAS  PubMed  Google Scholar 

  3. Silvennoinen HM, et al. CT perfusion identifies increased salvage of tissue in patients receiving intravenous recombinant tissue plasminogen activator within 3 hours of stroke onset. AJNR Am J Neuroradiol. 2008;29(6):1118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aviv RI, et al. Alberta stroke program early CT scoring of CT perfusion in early stroke visualization and assessment. AJNR Am J Neuroradiol. 2007;28(10):1975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain R, et al. First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery. 2007;61(4):778–86; discussion 786–7.

    Article  PubMed  Google Scholar 

  6. Nakashige A, et al. Quantitative measurement of hepatic portal perfusion by multidetector row CT with compensation for respiratory misregistration. Br J Radiol. 2004;77(921):728–34.

    Article  CAS  PubMed  Google Scholar 

  7. Meijerink MR, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol. 2007;17(7):1700–13.

    Article  PubMed  Google Scholar 

  8. Jiang T, et al. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Investig Radiol. 2012;47(1):11–7.

    Article  Google Scholar 

  9. George RT, et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol. 2011;197(4):829–37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. So A, et al. Non-invasive assessment of functionally relevant coronary artery stenoses with quantitative CT perfusion: preliminary clinical experiences. Eur Radiol. 2012;22(1):39–50.

    Article  PubMed  Google Scholar 

  11. Bastarrika G, et al. Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Investig Radiol. 2010;45(6):306–13.

    Article  CAS  Google Scholar 

  12. Ho KT, et al. Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging. 2010;3(8):811–20.

    Article  PubMed  Google Scholar 

  13. Prokop M. New challenges in MDCT. Eur Radiol. 2005;15(Suppl 5):E35–45.

    Article  PubMed  Google Scholar 

  14. Page M, et al. Comparison of 4 cm Z-axis and 16 cm Z-axis multidetector CT perfusion. Eur Radiol. 2010;20(6):1508–14.

    Article  PubMed  Google Scholar 

  15. Flohr TG, Raupach R, Bruder H. Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved? J Cardiovasc Comput Tomogr. 2009;3(3):143–52.

    Article  PubMed  Google Scholar 

  16. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6(12):731–44.

    Article  CAS  PubMed  Google Scholar 

  17. Bassingthwaighte JB, Knopp TJ, Anderson DU. Flow estimation by indicator dilution (bolus injection). Circ Res. 1970;27(2):277–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pardridge WM, et al. Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med. 1986;105(1):82–95.

    Article  CAS  PubMed  Google Scholar 

  19. Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand. 1963;58:292–305.

    Article  CAS  PubMed  Google Scholar 

  20. Hamilton WFM, Moore JW, Kinsman JM, Spurling RG. Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to cardiac output. Am J Phys. 1928;84:338–44.

    Article  CAS  Google Scholar 

  21. Stephenson JL. Theory of the measurement of blood flow by the dilution of an indicator. Bull Math Biophys. 1948;10(3):117–21.

    Article  CAS  PubMed  Google Scholar 

  22. Gobbel GT, Cann CE, Fike JR. Measurement of regional cerebral blood flow using ultrafast computed tomography. Theoretical aspects. Stroke. 1991;22(6):768–71.

    Article  CAS  PubMed  Google Scholar 

  23. Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol. 1983;18(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Vries HE, et al. The blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev. 1997;49(2):143–55.

    PubMed  Google Scholar 

  26. Mullani NA, Gould KL. First-pass measurements of regional blood flow with external detectors. J Nucl Med. 1983;24(7):577–81.

    CAS  PubMed  Google Scholar 

  27. Bindschadler M, et al. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT. Phys Med Biol. 2014;59(7):1533–56.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ishida M, et al. Underestimation of myocardial blood flow by dynamic perfusion CT: explanations by two-compartment model analysis and limited temporal sampling of dynamic CT. J Cardiovasc Comput Tomogr. 2016;10(3):207–14.

    Article  PubMed  Google Scholar 

  29. Ostergaard L, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36(5):715–25.

    Article  CAS  PubMed  Google Scholar 

  30. Wintermark M, et al. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001;22(5):905–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. So A, et al. Technical note: evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging. Med Phys. 2016;43(8):4821.

    Article  PubMed  Google Scholar 

  32. Gamel J, et al. Pitfalls in digital computation of the impulse response of vascular beds from indicator-dilution curves. Circ Res. 1973;32(4):516–23.

    Article  CAS  PubMed  Google Scholar 

  33. Ostergaard L, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med. 1996;36(5):726–36.

    Article  CAS  PubMed  Google Scholar 

  34. Groothuis DR, et al. A method to quantitatively measure transcapillary transport of iodinated compounds in canine brain tumors with computed tomography. J Cereb Blood Flow Metab. 1991;11(6):939–48.

    Article  CAS  PubMed  Google Scholar 

  35. Groothuis DR, et al. Quantitative measurements of capillary transport in human brain tumors by computed tomography. Ann Neurol. 1991;30(4):581–8.

    Article  CAS  PubMed  Google Scholar 

  36. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  38. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. theoretical derivation. J Cereb Blood Flow Metab. 1998;18(12):1365–77.

    Article  CAS  PubMed  Google Scholar 

  39. Gill PE, Murray W, Wright MH. Practical optimization. London: Academic; 1981.

    Google Scholar 

  40. Johnson JA, Wilson TA. A model for capillary exchange. Am J Phys. 1966;210(6):1299–303.

    Article  CAS  Google Scholar 

  41. Ho KT, et al. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur Heart J Cardiovasc Imaging. 2015;16(3):300–6.

    Article  PubMed  Google Scholar 

  42. Pontone G, et al. Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate- to high-risk symptomatic patients suspected of coronary artery disease. JACC Cardiovasc Imaging. 2019;12(2):338–49.

    Article  PubMed  Google Scholar 

  43. George RT, et al. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5(3):333–40.

    Article  PubMed  Google Scholar 

  44. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.

    Article  PubMed  Google Scholar 

  45. Wintermark M, et al. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol. 2004;25(5):720–9.

    PubMed  PubMed Central  Google Scholar 

  46. Sahani DV, et al. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue--initial experience. Radiology. 2007;243(3):736–43.

    Article  PubMed  Google Scholar 

  47. Ippolito D, et al. Hepatocellular carcinoma treated with transarterial chemoembolization: dynamic perfusion-CT in the assessment of residual tumor. World J Gastroenterol. 2010;16(47):5993–6000.

    PubMed  PubMed Central  Google Scholar 

  48. Claussen CD, et al. Bolus geometry and dynamics after intravenous contrast medium injection. Radiology. 1984;153(2):365–8.

    Article  CAS  PubMed  Google Scholar 

  49. Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol. 2003;76(Spec 1):S36–42.

    Article  PubMed  Google Scholar 

  50. Schoellnast H, et al. Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Investig Radiol. 2004;39(1):20–6.

    Article  Google Scholar 

  51. Hopper KD, et al. Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology. 1997;205(1):269–71.

    Article  CAS  PubMed  Google Scholar 

  52. Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol. 1976;21(3):390–8.

    Article  CAS  PubMed  Google Scholar 

  53. Haage P, et al. Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol. 2000;174(4):1049–53.

    Article  CAS  PubMed  Google Scholar 

  54. Coursey CA, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30(4):1037–55.

    Article  PubMed  Google Scholar 

  55. Wintermark M, et al. Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol. 2000;21(10):1881–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shankar JJ, Lum C, Sharma M. Whole-brain perfusion imaging with 320-MDCT scanner: reducing radiation dose by increasing sampling interval. AJR Am J Roentgenol. 2010;195(5):1183–6.

    Article  PubMed  Google Scholar 

  57. McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics. 2002;22(6):1541–53.

    Article  PubMed  Google Scholar 

  58. McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys. 1999;26(11):2223–30.

    Article  CAS  PubMed  Google Scholar 

  59. Bamberg F, et al. Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Investig Radiol. 2012;47(1):71–7.

    Article  Google Scholar 

  60. Greif M, et al. CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart. 2013;99(14):1004–11.

    Article  PubMed  Google Scholar 

  61. Lee TY, Chhem RK. Impact of new technologies on dose reduction in CT. Eur J Radiol. 2010;76(1):28–35.

    Article  PubMed  Google Scholar 

  62. Roberts HC, et al. Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. AJNR Am J Neuroradiol. 2001;22(6):1077–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wiesmann M, et al. Dose reduction in dynamic perfusion CT of the brain: effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time. Eur Radiol. 2008;18(12):2967–74.

    Article  PubMed  Google Scholar 

  64. Primak AN, et al. A technical solution to avoid partial scan artifacts in cardiac MDCT. Med Phys. 2007;34(12):4726–37.

    Article  CAS  PubMed  Google Scholar 

  65. Meinel JA, et al. Reduction of half-scan shading artifact based on full-scan correction. Acad Radiol. 2006;13(1):55–62.

    Article  PubMed  Google Scholar 

  66. Eldevik K, Nordhoy W, Skretting A. Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat Prot Dosim. 2010;139(1–3):430–3.

    Article  CAS  Google Scholar 

  67. Jia X, et al. GPU-based fast low-dose cone beam CT reconstruction via total variation. J Xray Sci Technol. 2011;19(2):139–54.

    PubMed  Google Scholar 

  68. Chou CY, et al. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction. Med Phys. 2011;38(7):4052–65.

    Article  PubMed  Google Scholar 

  69. Yan H, et al. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation. Med Phys. 2014;41(11):111912.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thibault JB, et al. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34(11):4526–44.

    Article  PubMed  Google Scholar 

  71. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Inform Theor IEEE Trans. 2006;52(2):489–509.

    Article  Google Scholar 

  72. Donoho DL. Compressed sensing. Inform Theor IEEE Trans. 2006;52(4):1289–306.

    Article  Google Scholar 

  73. Lauzier PT, Tang J, Chen GH. Prior image constrained compressed sensing: implementation and performance evaluation. Med Phys. 2012;39(1):66–80.

    Article  PubMed  Google Scholar 

  74. LaRoque SJ, Sidky EY, Pan X. Accurate image reconstruction from few-view and limited-angle data in diffraction tomography. J Opt Soc Am A Opt Image Sci Vis. 2008;25(7):1772–82.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Enjilela E, et al. Ultra-low dose quantitative CT myocardial perfusion imaging with sparse-view dynamic acquisition and image reconstruction: a feasibility study. Int J Cardiol. 2018;254:272–81.

    Article  PubMed  Google Scholar 

  76. Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys. 2008;35(2):660–3.

    Article  PubMed  Google Scholar 

  77. Budoff MJ, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  78. Meijboom WB, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44.

    Article  PubMed  Google Scholar 

  79. van Werkhoven JM, et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 2009;53(7):623–32.

    Article  PubMed  Google Scholar 

  80. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2(8):1009–23.

    Article  PubMed  Google Scholar 

  81. Hoffmann U, et al. Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology. 2004;231(3):697–701.

    Article  PubMed  Google Scholar 

  82. Rogers IS, et al. Comparison of postprocessing techniques for the detection of perfusion defects by cardiac computed tomography in patients presenting with acute ST-segment elevation myocardial infarction. J Cardiovasc Comput Tomogr. 2010;4(4):258–66.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50(7):1076–87.

    Article  PubMed  Google Scholar 

  84. Orn S, et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J. 2009;30(16):1978–85.

    Article  PubMed  Google Scholar 

  85. Miller TD, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation. 1995;92(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  86. Burns RJ, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol. 2002;39(1):30–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron So .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

So, A. (2020). CT Myocardial Perfusion Imaging. In: Samei, E., Pelc, N. (eds) Computed Tomography . Springer, Cham. https://doi.org/10.1007/978-3-030-26957-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26957-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26956-2

  • Online ISBN: 978-3-030-26957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics