Skip to main content

CT Perfusion Techniques and Applications in Stroke and Cancer

  • Chapter
  • First Online:

Abstract

CT perfusion is a functional imaging modality that has gained increasing use in imaging acute ischemic stroke patients to select patients for appropriate treatment with either thrombolysis or thrombectomy and in imaging cancer to confirm diagnosis and monitor progress of treatment. The advantages of CT perfusion are around-the-clock accessibility and easy implementation in most imaging departments. The discussion in this chapter will focus on four areas: (1) physiological models of contrast transport in tissue, (2) deconvolution techniques to derive functional parameters from the physiological models, (3) optimization of scanning protocols with respect to radiation dose and accuracy of derived functional parameters, and (4) application examples in stroke and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94(9):634A–5A.

    Article  Google Scholar 

  2. Koton S, Schneider ALC, Rosamond WD, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA – J Am Med Assoc. 2014;312(3):259–68.

    Article  CAS  Google Scholar 

  3. Yang Q, Botto LD, Erickson JD, et al. Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation. 2006;113(10):1335–43.

    Article  PubMed  Google Scholar 

  4. Lakshminarayan K, Berger AK, Fuller CC, et al. Trends in 10-year survival of patients with stroke hospitalized between 1980 and 2000: the Minnesota stroke survey. Stroke. 2014;45(9):2575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Howard G, Goff DC. Population shifts and the future of stroke: forecasts of the future burden of stroke. Ann N Y Acad Sci. 2012;1268:14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Anderson CS. Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989–1990. Stroke. 2002;33(4):1034–40.

    Article  PubMed  Google Scholar 

  7. Krueger H, Koot J, Hall RE, O’Callaghan C, Bayley M, Corbett D. Prevalence of individuals experiencing the effects of stroke in Canada: trends and projections. Stroke. 2015;46(8):2226–31.

    Article  PubMed  Google Scholar 

  8. Gloede TD, Halbach SM, Thrift AG, Dewey HM, Pfaff H, Cadilhac DA. Long-term costs of stroke using 10-year longitudinal data from the north East Melbourne stroke incidence study. Stroke. 2014;45(11):3389–94.

    Article  PubMed  Google Scholar 

  9. Miles K, Eastwood JD, Konig M, editors. Multidetector computed tomography in cerebrovascular disease: CT perfusion imaging. Abingdon: Informa Healthcare; 2007.

    Google Scholar 

  10. Miles K, Charnsangavei C, Cuenod CA, editors. Multidetector computed tomography in oncology: CT perfusion imaging. Abingdon: Informa Healthcare; 2007.

    Google Scholar 

  11. Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.

    Article  CAS  PubMed  Google Scholar 

  12. Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.

    Article  CAS  PubMed  Google Scholar 

  13. Campbell BCV, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.

    Article  CAS  PubMed  Google Scholar 

  14. Berkhemer OA, Fransen PSS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  15. Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.

    Article  CAS  PubMed  Google Scholar 

  16. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med. 2003;47:171–87.

    PubMed  Google Scholar 

  18. García-Figueiras R, Goh VJ, Padhani AR, Baleato-González S, Garrido M, León L, Gómez-Caamaño A. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200:8–19.

    Article  PubMed  Google Scholar 

  19. Ng CS, Zhang Z, Lee SI, Marques HS, Burgers K, Lee TY, et al. CT perfusion as an early biomarker of treatment efficacy in advanced ovarian cancer: an ACRIN and GOG study. Clin Cancer Res. 2017;23:3684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6:731–44.

    Article  CAS  PubMed  Google Scholar 

  21. Robert GW, Larson KB, Spaeth EE. The interpretation of mean transit time measurements for multiphase tissue systems. J Theor Biol. 1973;39:447–75.

    Article  Google Scholar 

  22. Klotz E, König M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999;30(3):170–84.

    Article  CAS  PubMed  Google Scholar 

  23. St Lawrence K, Lee T-Y. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain I. Theoretical derivation. J Cereb Blood Flow Metab. 1998;18:1365–77.

    Article  CAS  PubMed  Google Scholar 

  24. Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Phsyiol Scand. 1963;58:292–305.

    Article  CAS  Google Scholar 

  25. Rapoport SI. Blood-brain barrier in physiology and medicine. New York: Raven Press; 1976. p. 20.

    Google Scholar 

  26. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Metab. 1983;3:1–7.

    Article  CAS  Google Scholar 

  27. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Metab. 1985;5:584–90.

    Article  CAS  Google Scholar 

  28. Gill PE, Murray W, Wright MH. Practical optimization. London: Academic; 1982.

    Google Scholar 

  29. Philips DL. A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comp Math. 1962;9:84–90.

    Article  Google Scholar 

  30. Tikhonov AN. Regularizations of uncorrectly posed problems. Soviet Math. 1963;4:1624–9.

    Google Scholar 

  31. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715–25.

    Article  PubMed  Google Scholar 

  32. Calamante F, Gadian DG, Alan Connelly A. Quanti.cation of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Mag Res Med. 2003;50:1237–47.

    Article  Google Scholar 

  33. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50(1):164–74.

    Article  PubMed  Google Scholar 

  34. Lee TY, Murphy B. Implementing deconvolution analysis for perfusion CT. In: Miles K, Charnsangavei C, Cuenod CA, editors. Multidetector computed tomography in oncology: CT perfusion imaging. Abingdon: Informa Healthcare; 2007.

    Google Scholar 

  35. Wu O, Østergaard L, Koroshetz WJ, Schwamm LH, O’Donnell J, Schaefer PW, Rosen BR, Weisskoff RM, Sorensen AG. Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Res Med. 2003;50:856–64.

    Article  Google Scholar 

  36. Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Res Med. 2004;51:631–4.

    Article  CAS  Google Scholar 

  37. Ibaraki M, Shimosegawa E, Toyoshima H, Takahashi K, Miura S, Kanno I. Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab. 2005;25:378–90.

    Article  PubMed  Google Scholar 

  38. Lee TY. Method and apparatus for calculating blood flow parameters. US Patent Office. 2005. 6898453.

    Google Scholar 

  39. Aviv RI, d’Esterre CD, Murphy BD, Hopyan JJ, Buck B, Mallia G, Li V, Zhang L, Symons SP, Lee TY. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology. 2009;250(3):867–77.

    Article  PubMed  Google Scholar 

  40. d’Esterre CD, Boesen ME, Ahn SH, Pordeli P, Najm M, et al. Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke. Stroke. 2015;46(12):3390–7.

    Article  PubMed  Google Scholar 

  41. Eskildsen SF, Gyldensted L, Nagenthiraja K, Nielsen RB, Hansen MB, Dalby RB, et al. Increased cortical capillary transit time heterogeneity in Alzheimer’s disease: a DSC-MRI perfusion study. Neurobiol Aging. 2017;50:107–18.

    Article  PubMed  Google Scholar 

  42. Østergaard L, Engedal TS, Aamand R, Mikkelsen R, Iversen NK, Anzabi M, et al. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab. 2014;34(10):1585–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. d’Esterre CD, Aviv RI, Lee TY. The evolution of the cerebral blood volume abnormality in patients with ischemic stroke: a CT perfusion study. Acta Radiol. 2012;53(4):461–7.

    Article  PubMed  Google Scholar 

  44. Lee TY, Ellis RJ, Dunscombe PB, McClarty B, Hodson DI, Kroeker MA, et al. Quantitative computed tomography of the brain with xenon enhancement: a phantom study with the GE9800 scanner. Phys Med Biol. 1990;35:925–35.

    Article  CAS  PubMed  Google Scholar 

  45. Wintermark M, Maeder P, Verdun FR, Thiran JP, Valley JF, Schnyder P, et al. Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol. 2000;21:1881–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirata M, Sugawara Y, Fukutomi Y, Oomoto K, Murase K, Miki H, et al. Measurement of radiation dose in cerebral CT perfusion study. Radiat Med. 2005;23:97–103.

    PubMed  Google Scholar 

  47. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000;217:430–5.

    Article  CAS  PubMed  Google Scholar 

  48. Li ZL, Li H, Zhang K, Li WJ, Chen X, Wu B, et al. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV). Eur Radiol. 2014;24(8):1906–13.

    Article  PubMed  Google Scholar 

  49. Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm--initial clinical experience. Radiology. 2010;254(1):145–53.

    Article  PubMed  Google Scholar 

  50. Murphy A, So A, Lee TY, Symons S, Jakubovic R, Zhang L, Aviv RI. Low dose CT perfusion in acute ischemic stroke. Neuroradiology. 2014;56(12):1055–62.

    Article  PubMed  Google Scholar 

  51. Enjilela E, Lee TY, Hsieh J, Murjoomdar A, Stewart E, Dekaban M, Su F, So A. Ultra-low-dose sparse-view quantitative CT liver perfusion imaging. Tomography. 2017;3(4):175–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Enjilela E, Lee TY, Hsieh J, Wisenberg G, Teefy P, Yadegari A, Bagur R, Islam A, Branch K, So A. Ultra-low dose quantitative CT myocardial perfusion imaging with sparse-view dynamic acquisition and image reconstruction: a feasibility study. Int J Cardiol. 2018;254:272–81.

    Article  PubMed  Google Scholar 

  53. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

    Article  Google Scholar 

  54. Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017–25.

    Article  CAS  PubMed  Google Scholar 

  55. Fisher M, Adams RD. Observations on brain embolism with special reference to the mechanism of hemorrhagic infarction. J Neuropathol Exp Neurol. 1951;10:92–4.

    CAS  PubMed  Google Scholar 

  56. Larrue V, von Kummer R, del Zoppo G, Bluhmki E. Hemorrhagic transformation in acute ischemic stroke: potential contributing factors in the European Cooperative Acute Stroke Study. Stroke. 1997;28:957–60.

    Article  CAS  PubMed  Google Scholar 

  57. Molina CA, Alvarez-Sabin J, Montaner J, et al. Thrombolysis-related hemorrhagic infarction: a marker of early reperfusion, reduced infarct size, and improved outcome in patients with proximal middle cerebral artery occlusion. Stroke. 2002;33:1551–6.

    Article  PubMed  Google Scholar 

  58. Larrue V, von Kummer RR, Muller A, Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001;32:438–41.

    Article  CAS  PubMed  Google Scholar 

  59. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, WAKE-UP Investigators et al, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.

    Article  PubMed  Google Scholar 

  60. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, the EXTEND Investigators, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803.

    Article  PubMed  Google Scholar 

  61. Neumann-Haefelin C, Brinker G, Uhlenkuken U, Pillekamp F, Hossmann KA, Hoehn M. Prediction of hemorrhagic transformation after thrombolytic therapy of clot embolism: an MRI investigation in rat brain. Stroke. 2002;33:1392–8.

    Article  CAS  PubMed  Google Scholar 

  62. Jordan JD, Powers WJ. Cerebral autoregulation and acute ischemic stroke. Am J Hypertens. 2012;25(9):946–50.

    Article  PubMed  Google Scholar 

  63. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, EPITHET investigators, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.

    Article  PubMed  Google Scholar 

  64. Murphy MJ, Tichauer KM, Sun L, Chen X, Lee TY. Mean transit time as an index of cerebral perfusion pressure in experimental systemic hypotension. Physiol Meas. 2011;32(4):395–405.

    Article  PubMed  Google Scholar 

  65. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94:153–6.

    Article  CAS  PubMed  Google Scholar 

  66. Biolato M, Marrone G, Racco S, Di Stasi C, Miele L, Gasbarrini G, et al. Transarterial chemoembolization (tace) for unresectable HCC: a new life begins? Eur Rev Med Pharmacol Sci. 2010;14:356–62.

    CAS  PubMed  Google Scholar 

  67. Laeseke PF, Frey TM, Brace CL, Sampson LA, Winter TC 3rd, Ketzler JR, et al. Multiple-electrode radiofrequency ablation of hepatic malignancies: initial clinical experience. AJR Am J Roentgenol. 2007;188:1485–94.

    Article  PubMed  Google Scholar 

  68. Liang P, Wang Y. Microwave ablation of hepatocellular carcinoma. Oncology. 2007;72(Suppl 1):124–31.

    Article  PubMed  Google Scholar 

  69. Chiandussi L, Greco F, Sardi G, Vaccarino A, Ferraris CM, Curti B. Estimation of hepatic arterial and portal venous blood flow by direct catheterization of the vena porta through the umbilical cord in man: preliminary results. Acta Hepatosplenol. 1968;15:166–71.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Yim Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, TY., Yang, D.M., Li, F., Marants, R. (2020). CT Perfusion Techniques and Applications in Stroke and Cancer. In: Samei, E., Pelc, N. (eds) Computed Tomography . Springer, Cham. https://doi.org/10.1007/978-3-030-26957-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26957-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26956-2

  • Online ISBN: 978-3-030-26957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics