Skip to main content

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension

  • Conference paper
  • First Online:
Book cover Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11694))

Included in the following conference series:

Abstract

We describe a novel approach for two-party private set intersection (PSI) with semi-honest security. Compared to existing PSI protocols, ours has a more favorable balance between communication and computation. Specifically, our protocol has the lowest monetary cost of any known PSI protocol, when run over the Internet using cloud-based computing services (taking into account current rates for CPU + data). On slow networks (e.g., 10 Mbps) our protocol is actually the fastest.

Our novel underlying technique is a variant of oblivious transfer (OT) extension that we call sparse OT extension. Conceptually it can be thought of as a communication-efficient multipoint oblivious PRF evaluation. Our sparse OT technique relies heavily on manipulating high-degree polynomials over large finite fields (i.e. elements whose representation requires hundreds of bits). We introduce extensive algorithmic and engineering improvements for interpolation and multi-point evaluation of such polynomials, which we believe will be of independent interest.

Finally, we present an extensive empirical comparison of state-of-the-art PSI protocols in several application scenarios and along several dimensions of measurement: running time, communication, peak memory consumption, and—arguably the most relevant metric for practice—monetary cost.

B. Pinkas—Supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by a grant from the Israel Science Foundation.

M. Rosulek—Partially supported by NSF award 1617197, a Google faculty award, and a Visa faculty award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also https://whispersystems.org/blog/contact-discovery/.

  2. 2.

    We are not aware of any prior implementation of this protocol, but estimated the running time through benchmark RSA exponentiations. For the set sizes we consider in this work, the protocol would require many hours or even a day.

  3. 3.

    The main challenge is that a simulator would have to extract effective inputs \(\{x_1, \ldots , x_n\}\) from a corrupt party, seeing only \(\{ H(x_1)^\alpha , \ldots , H(x_n)^\alpha \}\).

  4. 4.

    In [26, Sect. 3.2] they also use a PRF rather than PRG, but for a completely different purpose: random access to the OT extension matrix was used to parallelize OT extension and reduce memory footprint.

  5. 5.

    This observation was concurrently and independently noted in [18]; however, their focus is exclusively on Cuckoo hashing, with at most one item per bin. They do not consider our generalized 2-choice hashing.

  6. 6.

    https://github.com/osu-crypto/libOTe.

  7. 7.

    See https://iperf.fr/iperf-download.php.

  8. 8.

    The pricing can be found in https://aws.amazon.com/ec2/pricing/on-demand/.

References

  1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: ACM CCS, pp. 535–548 (2013)

    Google Scholar 

  2. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_10

    Chapter  Google Scholar 

  3. Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: STOC, pp. 479–488 (1996)

    Google Scholar 

  4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

    Chapter  Google Scholar 

  5. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: ACM CCS, pp. 498–507 (2007)

    Google Scholar 

  6. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)

    Google Scholar 

  7. Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing refreshes like a RePSI: reactive private set intersection. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 280–300. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_15

    Chapter  Google Scholar 

  8. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: ACM CCS 2017, pp. 1243–1255 (2017)

    Google Scholar 

  9. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 164–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_10

    Chapter  Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  11. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_17

    Chapter  Google Scholar 

  12. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_13

    Chapter  MATH  Google Scholar 

  13. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30921-2_4

    Chapter  Google Scholar 

  14. Czumaj, A., Riley, C., Scheideler, C.: Perfectly balanced allocation. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 240–251. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45198-3_21

    Chapter  Google Scholar 

  15. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018)

    Article  Google Scholar 

  16. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: ACM CCS 2013, pp. 789–800 (2013)

    Google Scholar 

  17. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28, 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  18. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear communication from general assumptions. ePrint Archive, Report 2018/238 (2018)

    Google Scholar 

  19. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17

    Chapter  Google Scholar 

  20. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. Cryptology ePrint Archive, Report 2017/409 (2017). http://eprint.iacr.org/2017/409

  21. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22

    Chapter  Google Scholar 

  22. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_6

    Chapter  Google Scholar 

  23. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_10

    Chapter  Google Scholar 

  24. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_8

    Chapter  Google Scholar 

  25. He, X., Machanavajjhala, A., Flynn, C.J., Srivastava, D.: Composing differential privacy and secure computation: a case study on scaling private record linkage. In: ACM CCS, pp. 1389–1406 (2017)

    Google Scholar 

  26. Henecka, W., Schneider, T.: Faster secure two-party computation with less memory. In: ASIA CCS, pp. 437–446 (2013)

    Google Scholar 

  27. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: NDSS (2012)

    Google Scholar 

  28. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust in electronic communities. In: EC, pp. 78–86 (1999). https://dblp.org/rec/conf/sigecom/HubermanFH99

  29. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2

    Chapter  Google Scholar 

  30. Ion, M., et al.: Private intersection-sum protocol with applications to attributing aggregate ad conversions. ePrint Archive 2017/738 (2017)

    Google Scholar 

  31. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  32. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18

    Chapter  Google Scholar 

  33. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile applications. PoPETs 2017(4), 177–197 (2017)

    Google Scholar 

  34. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4

    Chapter  Google Scholar 

  35. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched OPRF with applications to PSI. In: ACM CCS (2016)

    Google Scholar 

  36. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 1257–1272. ACM Press (2017)

    Google Scholar 

  37. Lambæk, M.: Breaking and fixing private set intersection protocols. Master’s thesis, Aarhus University (2016)

    Google Scholar 

  38. Manulis, M., Pinkas, B., Poettering, B.: Privacy-preserving group discovery with linear complexity. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 420–437. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_25

    Chapter  Google Scholar 

  39. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: IEEE S&P (1986)

    Google Scholar 

  40. Moenck, R., Borodin, A.: Fast modular transforms via division. In: Switching and Automata Theory, pp. 90–96 (1972)

    Google Scholar 

  41. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM STOC, pp. 245–254. ACM Press, May 1999

    Google Scholar 

  42. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) 12th SODA, pp. 448–457. ACM-SIAM (2001)

    Google Scholar 

  43. Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for short secrets. In: NDSS (2017)

    Google Scholar 

  44. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: USENIX 2015 (2015)

    Google Scholar 

  45. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX 2014, pp. 797–812 (2014)

    Google Scholar 

  46. Rabin, M.O.: How to exchange secrets with oblivious transfer. ePrint Archive 2005/187, (2005)

    Google Scholar 

  47. Resende, A.C.D., Aranha, D.F.: Unbalanced approximate private set intersection. ePrint Archive 2017/677 (2017)

    Google Scholar 

  48. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 1229–1242. ACM Press (2017)

    Google Scholar 

  49. Sanders, P., Egner, S., Korst, J.: Fast concurrent access to parallel disks. Algorithmica 35(1), 21–55 (2003)

    Article  MathSciNet  Google Scholar 

  50. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_100

    Chapter  Google Scholar 

  51. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U.: Privacy preserving error resilient DNA searching through oblivious automata. In: ACM CCS, pp. 519–528 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benny Pinkas or Avishay Yanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A. (2019). SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26954-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26953-1

  • Online ISBN: 978-3-030-26954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics