Skip to main content

Photodynamic Therapy for the Treatment of Basal Cell Carcinoma

  • Chapter
  • First Online:
Book cover Basal Cell Carcinoma
  • 1010 Accesses

Abstract

The National Comprehensive Cancer Network (NCCN) 2018 Clinical Practice Guidelines in Oncology for basal cell carcinoma (BCC) identifies risks factors for recurrence of BCCs and classifies tumors as high, medium, or low risk based on tumor characteristics such as location, histologic subtype, size, and prior treatment (see section “Introduction” in Chap. 4). Based on the NCCN recommendations, superficial therapies such as topical therapies, cryotherapy (CT), and photodynamic therapy (PDT) should be considered in low-risk, superficial BCCs in patients where surgical therapy (ST) and radiotherapy (RT) are contraindicated or impractical. In this chapter, PDT will be discussed as a nonsurgical treatment option for BCC. Additional nonsurgical treatment options including topical therapies, CT, electrodesiccation and curettage (ED&C), laser therapy (LT), RT, intralesional therapy, and systemic therapy such as targeted therapy and immunotherapy will be discussed in other chapters (see Chaps. 4, 6, 12, 10, 5, 13, and 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Network NCC. NCCN clinical practice guidelines in oncology (NCCN guidelines). Basal cell skin cancer version I. 2018.

    Google Scholar 

  2. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55:145–57.

    Article  CAS  PubMed  Google Scholar 

  3. Lui H, Anderson RR. Photodynamic therapy in dermatology: recent developments. Dermatol Clin. 1993;11:1–13.

    Article  CAS  PubMed  Google Scholar 

  4. Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. J Am Acad Dermatol. 2000;42:389–413; quiz 4–6.

    Article  CAS  PubMed  Google Scholar 

  5. Bohmer RM, Morstyn G. Uptake of hematoporphyrin derivative by normal and malignant cells: effect of serum, pH, temperature, and cell size. Cancer Res. 1985;45:5328–34.

    CAS  PubMed  Google Scholar 

  6. Evensen JF. The use of porphyrins and non-ionizing radiation for treatment of cancer. Acta Oncol. 1995;34:1103–10.

    Article  CAS  PubMed  Google Scholar 

  7. Mang TS, Dougherty TJ, Potter WR, Boyle DG, Somer S, Moan J. Photobleaching of porphyrins used in photodynamic therapy and implications for therapy. Photochem Photobiol. 1987;45:501–6.

    Article  CAS  PubMed  Google Scholar 

  8. Moan J, Christensen T, Jacobsen P. Porphyrin-sensitized photoinactivation of cells in vitro. New York: Alan RLiss Inc; 1984.

    Google Scholar 

  9. Bissonnette R, Lui H. Current status of photodynamic therapy in dermatology. Dermatol Clin. 1997;15:507–19.

    Article  CAS  PubMed  Google Scholar 

  10. Driver I, Lowdell C, Ash D. In vivo measurements of the optical interaction coefficients of human tumors. Phys Med Biol. 1991;36:805–13.

    Article  CAS  PubMed  Google Scholar 

  11. Wilson B. The physics of photodynamic therapy. Phys Med Biol. 1986;31:327–60.

    Article  CAS  PubMed  Google Scholar 

  12. Frazier C. Photodynamic therapy in dermatology. Int J Dermatol. 1996;35:312–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wolf P. Photodynamische therapie (PDT). Hautarzt. 1997;48:137–48.

    CAS  PubMed  Google Scholar 

  14. Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002;17:173–86.

    Article  CAS  PubMed  Google Scholar 

  15. Van Hillegersberg R, Kort W, Wilson J. Current status of photodynamic therapy in oncology. Drugs. 1994;48:510–27.

    Article  PubMed  Google Scholar 

  16. http://www.accessdata.fda.gov/. 2018.

  17. Policard A. Etude sur les aspects offertspar destumeurs experimentales examinées à la lumiere de Wood. CR Soc Biol. 1924;91:1423–4.

    Google Scholar 

  18. Auler H, Banzer G. Untersuchungen ueber die Rolle der Porphyrine bei geschwustkranken Menschen und Tieren. Z Krebsforsch. 1942;53:65–8.

    Article  CAS  Google Scholar 

  19. Figge F, Weiland G, Manganiella L. Cancer detection and therapy: affinity of neoplastic, embryonic and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med. 1948;68:640–1.

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz S, Absolon K, Vermund H. Some relationships of porphyrins, X-rays and tumor. Univ Minn Med Bull. 1955;27:7–13.

    Google Scholar 

  21. Kick G, Messer G, Plweig G. Historische Entwicklung der Photodynamischen Therapie. Hautarzt. 1996;47:644–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lipson R, Baldes E, Olsen E. The use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst. 1961;26:1–2.

    CAS  PubMed  Google Scholar 

  23. Dougherty T, Kaufman J, Goldfarb A, Weishaupt K, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38:2628–35.

    CAS  PubMed  Google Scholar 

  24. Cannon J. Pharmaceutics and drug delivery aspects of heme and porphyrin therapy. J Pharm Sci. 1993;82:435–46.

    Article  CAS  PubMed  Google Scholar 

  25. Lui H. Photodynamic therapy in dermatology. Arch Dermatol. 1992;128:1631–6.

    Article  CAS  PubMed  Google Scholar 

  26. Gomer C, Dougherty T. Determination of 3H and 14Chemato- porphyrin derivative distribution in normal and malignant tis- sue. Cancer Res. 1979;39:146–51.

    CAS  PubMed  Google Scholar 

  27. Bugelski D, Porter C, Dougherty T. Autoradiographic distribution of hematoporphyrin derivative in normal and tumour tissue of the mouse. Cancer Res. 1989;41:4606–12.

    Google Scholar 

  28. Woodburn K, Stylli S, Hill J, Kaye A, Reiss J, Phillis D. Evaluation of tumour and tissue distribution of porphyrins for use in photodynamic therapy. Br J Cancer. 1992;65:321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dougherty T, Potter W, Weishaupt K. The structure of the active component of hematoporphyrin derivative. Prog Clin Biol Res. 1984;170:301–14.

    CAS  PubMed  Google Scholar 

  30. Dougherty T. Studies on the structure of porphyrins contained in Photofrin II. Photochem Photobiol. 1987;46:569–73.

    Article  CAS  PubMed  Google Scholar 

  31. Soret J. Recherches sur l’absorption des rayons ultra violets par diverses substances. Arch Sci Phys Nat. 1883;10:430–85.

    Google Scholar 

  32. Ochsner M. Photodynamic therapy: the clinical perspective. Arzneim Forsch Drug Res. 1997;47:1185–94.

    CAS  Google Scholar 

  33. Stables G, Ash D. Photodynamic therapy. Cancer Treat Rev. 1995;21:311–23.

    Article  CAS  PubMed  Google Scholar 

  34. Peng Q, Warloe T, Berg C, et al. 5-Aminolevulinic acid-based photodynamic therapy: clinical research and future challenges. Cancer. 1997;79:2282–308.

    Article  CAS  PubMed  Google Scholar 

  35. Peng Q, Moan J, Iani V, Nesland J. Effect of desferrioxamine on production of ALA-induced protoporphyrin IX in normal mouse skin. Proc SPIE. 1996;2625:51–7.

    Article  CAS  Google Scholar 

  36. Ortel B, Tanew A, Honigsmann H. Lethal photosensitization by endogenous porphyrins of PAM cells: modification by desferrioxamine. J Photochem Photobiol B. 1993;17:273–8.

    Article  CAS  PubMed  Google Scholar 

  37. Malik Z, Kostenich G, Roitman L, Ehrenberg B, Orenstein A. Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumors of mice. J Photochem Photobiol B. 1995;28:213–8.

    Article  CAS  PubMed  Google Scholar 

  38. Warloe T, Peng Q, Heyerdahl J, Moan J, Steen B, Giercksky K. Photodynamic therapy with 5-aminolevulinic acid induced porphyrins and DMSO/EDTA for basal cell carcinoma. Proc SPIE. 1995;2371:226–35.

    Article  Google Scholar 

  39. Rollakanti K, Anand S, Maytin E. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models. Proc SPIE Int Soc Opt Eng. 2015;9308:93080Q.

    PubMed  PubMed Central  Google Scholar 

  40. Gaullier J, Berg K, Peng Q, et al. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997;57:1481–6.

    CAS  PubMed  Google Scholar 

  41. MetvixTM Package Insert. 2009.

    Google Scholar 

  42. Santoro O, Bandieramonte G, Melloni E, et al. Photodynamic therapy by topical meso-tetraphenylporphinesulfonate tetrasodium salt administration in superficial basal cell carcinomas. Cancer Res. 1990;50:4501–3.

    CAS  PubMed  Google Scholar 

  43. Pass H. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 1993;85:443–56.

    Article  CAS  PubMed  Google Scholar 

  44. Winkelman J, Collins G. Neurotoxicity of tetraphenylporphine sulfonate TPPS4 and its relation to photodynamic therapy. Photochem Photobiol. 1987;46:801–7.

    Article  CAS  PubMed  Google Scholar 

  45. Evensen J. Distribution of tetraphenylporphine sulfonate in mice bearing Lew lung carcinoma. Photodynamic therapy of tumors and other diseases. Padova: Liberia Progetto; 1985. p. 215–8.

    Google Scholar 

  46. Kessel D, Thompson P, Saatio K, Nantwi K. Tumor localization and photosensitization by sulfonated derivative of tetraphenylporphine. Photochem Photobiol. 1987;45:787–90.

    Article  CAS  PubMed  Google Scholar 

  47. Lui H, Anderson R. Photodynamic therapy in dermatology: shedding a different light on skin disease. Arch Dermatol. 1992;128:1631–6.

    Article  CAS  PubMed  Google Scholar 

  48. Ben-Hur E, Rosenthal I. The phthalocyanines: a new class of mammalian photosensitizers with potential for cancer phototherapy. Int J Radiat Biol. 1985;47:145–7.

    CAS  Google Scholar 

  49. Canti G, Franco P, Marelli O, Oubeddu R, Taroni P, Ramponi R, et al. Comparative study of the therapeutic effect of photoactivated hematoporphyrin derivative and aluminum disulfonated phthalocyanines on tumor bearing mice. Cancer Lett. 1990;53:123–7.

    Article  CAS  PubMed  Google Scholar 

  50. Anderson C, Freye K, Tubesing K, et al. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF-1 tumor in C3H mice. Photochem Photobiol. 1998;67:332–6.

    Article  CAS  PubMed  Google Scholar 

  51. Colussi V, Feyes D, Li Y-S, et al. Phthalocyanine (Pc4) photodynamic therapy (PDT) of human OVCAR-3 tumors. Photochem Photobiol. 1998;67(Suppl):25S.

    Google Scholar 

  52. Spikes J. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol. 1986;43:691–9.

    Article  CAS  PubMed  Google Scholar 

  53. Oleinick N, Antunez A, Clay M, Righter B, Kenney M. New phthalocyanine photosensitizers for photodynamic therapy. Photochem Photobiol. 1993;57:242–7.

    Article  CAS  PubMed  Google Scholar 

  54. Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol. 1991;53:859–70.

    Article  CAS  PubMed  Google Scholar 

  55. Tralau C, Barr H, Sanderman R, Barton T, Lewin M, Bown S. Aluminium sulfonated phthalocyanine distribution in rodent tumors of the colon, brain and pancreas. Photochem Photobiol. 1987;46:777–81.

    Article  CAS  PubMed  Google Scholar 

  56. Agarwal R, Athar M, Elmets C, Bickers D, Mukhtar H. Photodynamic therapy of chemically- and ultraviolet B radiation-induced murine skin papillomas by chloroaluminum phthalocyanine tetrasulfonate. Photochem Photobiol. 1992;56:43–50.

    Article  CAS  PubMed  Google Scholar 

  57. Zaidi S, Agarwal R, Eichler G, Rihter B, Kenney M, Mukhtar H. Photodynamic effects of new silicon phthalocyanines: in vitro studies utilizing rate hepatic microsomes and human erythrocyte ghosts and model membrane sources. Photochem Photobiol. 1993;58:204–10.

    Article  CAS  PubMed  Google Scholar 

  58. Agarwal R, Korman N, Mohan R, et al. Apoptosis in an early event during phthalocyanine photodynamic therapy-induced ablation of chemically induced squamous papillomas in mouse skin. Photochem Photobiol. 1996;63:547–52.

    Article  CAS  PubMed  Google Scholar 

  59. Spikes J. Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B. 1990;6:259–74.

    Article  CAS  PubMed  Google Scholar 

  60. Wilson B, Mang T. Photodynamic therapy for cutaneous malignancies. Clin Dermatol. 1995;13:91–6.

    Article  CAS  PubMed  Google Scholar 

  61. Young S, Woodburn K, Wright M, et al. Lutetium texaphyrin (PCI-0123): a near-infrared, water- soluble photosensitizer. Photochem Photobiol. 1996;63:892–7.

    Article  CAS  PubMed  Google Scholar 

  62. Woodburn K, Fan Q, Kessel D, et al. Phototherapy of cancer and atheromatous plaque with texaphyrins. J Clin Laser Med Surg. 1996;14:343–8.

    Article  CAS  PubMed  Google Scholar 

  63. Dougherty T, Gomer C, Henderson B, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    Article  CAS  PubMed  Google Scholar 

  64. McCaughan L. Lasers in photodynamic therapy. Nurs Clin North Am. 1990;25:725–38.

    CAS  PubMed  Google Scholar 

  65. Fisher A, Murphree A, Gomer C. Clinical and preclinical photodynamic therapy. Lasers Surg Med. 1995;17:2–31.

    Article  CAS  PubMed  Google Scholar 

  66. Szeimies R, Hein R, Baumler W, Heine A, Landthaler M. A possible new incoherent lamp for photodynamic treatment of superficial skin lesions. Acta Derm Venereol (Stockh). 1994;74:117–9.

    CAS  Google Scholar 

  67. Roberts D, Cairnduff F. Photodynamic therapy of primary skin cancer: a review. Br J Plast Surg. 1995;48:360–70.

    Article  CAS  PubMed  Google Scholar 

  68. Whitehurst C, Byrne K, Moore J. Development of an alternative light source to lasers for photodynamic therapy: 1. Comparative in vitro dose response characteristics. Lasers Med Sci. 1993;8:259–67.

    Article  Google Scholar 

  69. Whitehurst C, Byrne K, Morton C, Moore J. Performance of a nonlaser light source for photodynamic therapy. Proc SPIE. 1995;2371:482–8.

    Article  Google Scholar 

  70. Karrer S, Szeimies R, Hohenleutner U, Heine A, Landthaler M. Unilateral localized basaliomatosis: treatment with topical photodynamic therapy after application of 5-aminolevulinic acid. Dermatology. 1995;190:218–22.

    Article  CAS  PubMed  Google Scholar 

  71. Masters B, So P, Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J. 1997;72:2405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Konig K. Multiphoton microscopy in life sciences. J Microsc Oxford. 2000;200:83–104.

    Article  CAS  Google Scholar 

  73. Gomer C, Ferrario A, Hayashi N, Rucker N, Szirth B, Murphree A. Molecular, cellular and tissue responses following photodynamic therapy. Lasers Surg Med. 1988;8:450–63.

    Article  CAS  PubMed  Google Scholar 

  74. Stern S, Craig J, Flock S, Montague D, Waner M, Jacques S. Tumor specific response to photodynamic therapy. Lasers Surg Med. 1993;13:434–9.

    Article  CAS  PubMed  Google Scholar 

  75. Manyak M, Russo A, Smith P, Glatstein E. Photodynamic therapy. J Clin Oncol. 1988;6:380–91.

    Article  CAS  PubMed  Google Scholar 

  76. Lin C. Photodynamic therapy of malignant tumors: recent developments. Cancer Cells. 1991;3:437–44.

    CAS  PubMed  Google Scholar 

  77. Gomer C, Rucker N, Ferrario A, Wong S. Properties and application of photodynamic therapy. Radiat Res. 1989;120:1–18.

    Article  CAS  PubMed  Google Scholar 

  78. Dougherty T, Marcus S. Photodynamic therapy. Eur J Cancer. 1992;28A:1734–42.

    Article  CAS  PubMed  Google Scholar 

  79. Moan J, Christensen T. Cellular uptake and photodynamic effect of hematoporphyrin. Photobiochem Photobiophys. 1981;2:291–9.

    CAS  Google Scholar 

  80. Volden G, Christensen T, Moan J. Photodynamic membrane damage of hematoporphyrin-derivative-treated NHIK 3025 cells in vitro. Photochem Photobiophys. 1981;3:105.

    CAS  Google Scholar 

  81. Kessel D. Photosensitization with derivative of hematoporphyrin. Int J Radiat Biol. 1986;49:901–7.

    CAS  Google Scholar 

  82. Kessel D. Sites of photosensitization by derivatives of hematoporphyrin. Photochem Photobiol. 1986;44:489–93.

    Article  CAS  PubMed  Google Scholar 

  83. Hilf R, Smail D, Murant R, Leakay P, Gibson S. Hematoporphyrin derivative induced photosensitivity of mitochondrial succinate dehydrogenase and selected cytosolic enzymes of R3230 AC mammary adenocarcinomas of rats. Cancer Res. 1984;44:1483–8.

    CAS  PubMed  Google Scholar 

  84. Zaidi S, Oleinick N, Zaim M, Mukhtar H. Apoptosis during photodynamic therapy-induced ablation of RIF-1 tumors in C3H mice:electron microscopic, histopathologic and biochemical evidence. Photochem Photobiol. 1993;58:771–6.

    Article  CAS  PubMed  Google Scholar 

  85. Wieman T, Fingar V. Photodynamic therapy. Surg Clin North Am. 1992;72:609–22.

    Article  CAS  PubMed  Google Scholar 

  86. Klausner J, Paterson I, Kobzik K, Valeri C, Shepro D, Hecthman H. Oxygen free radicals mediate ischemia-induced lung injury. Surgery. 1989;105:192–9.

    CAS  PubMed  Google Scholar 

  87. Doukash J, Hechtman H, Shepro D. Vasoactive amines and eicosanoids interactively regulate both polymorphonuclear leukocyte diapedesis and albumin permeability in vitro. Microvasc Res. 1989;37:125–37.

    Article  Google Scholar 

  88. McGovern V. The mechanism of photosensitivity. Arch Dermatol. 1961;83:94–105.

    Article  Google Scholar 

  89. Fingar V. Vascular effects of photodynamic therapy. J Clin Laser Med Surg. 1996;14:323–8.

    Article  CAS  PubMed  Google Scholar 

  90. Krosl G, Korbelik M, Dougherty G. Induction of immune cell infiltration into murin SCCVII tumor by photofrin-based photodynamic therapy. Br J Cancer. 1995;71:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gollnick S, Liu X, Owczarczak B, Musser D, Henderson B. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res. 1997;57:3904–9.

    CAS  PubMed  Google Scholar 

  92. Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg. 1996;14:329–34.

    Article  CAS  PubMed  Google Scholar 

  93. Canti G, Lattuada D, Nicolin A, Taroni P, Valentini G, Oubeddu G. Antitumor immunity induced by photodynamic therapy with aluminum phthalocyanine and laser light. Anti-Cancer Drugs. 1994;5:443–7.

    Article  CAS  PubMed  Google Scholar 

  94. Christensen E, Mørk C, Skogvoll E. High and sustained efficacy after two sessions of topical 5-aminolaevulinic acid photodynamic therapy for basal cell carcinoma: a prospective, clinical and histological 10-year follow-up study. Br J Dermatol. 2012;166:1342–8.

    Article  CAS  PubMed  Google Scholar 

  95. Fantini F, Greco A, Del Giovane C, et al. Photodynamic therapy for basal cell carcinoma: clinical and pathological determinants of response. J Eur Acad Dermatol Venereol. 2011;25:896–901.

    Article  CAS  PubMed  Google Scholar 

  96. Horn M, Wolf P, Wulf H, et al. Topical methyl aminolaevulinate photodynamic therapy in patients with basal cell carcinoma prone to complications and poor cosmetic outcome with conventional treatment. Br J Dermatol. 2003;149:1242–9.

    Article  CAS  PubMed  Google Scholar 

  97. Vinciullo C, Elliott T, Francis D, et al. Photodynamic therapy with topical methyl aminolaevulinate for ‘difficult-to-treat’ basal cell carcinoma. Br J Dermatol. 2005;152:765–72.

    Article  CAS  PubMed  Google Scholar 

  98. Kotimaki J. Photodynamic therapy of eyelid basal cell carcinoma. J Eur Acad Dermatol Venereol. 2009;23:1083–7.

    Article  CAS  PubMed  Google Scholar 

  99. Togsverd-Bo K, Haedersdal M, Wulf H. Photodynamic therapy for tumors on the eyelid margins. Arch Dermatol. 2009;145:944–7.

    Article  PubMed  Google Scholar 

  100. Roozeboom M, Arits A, Nelemans P, Kelleners-Smeets N. Overall treatment success after treatment of primary superficial basal cell carcinoma: a systematic review and meta-analysis of randomized and nonrandomized trials. Br J Dermatol. 2012;167:733–56.

    Article  CAS  PubMed  Google Scholar 

  101. Haller J, Cairnduff F, Slack G, et al. Routine double treatments of superficial basal cell carcinomas using aminolaevulinic acid-based photodynamic therapy. Br J Dermatol. 2000;143:1270–5.

    Article  CAS  PubMed  Google Scholar 

  102. Souza C, Felicio L, Ferreira J, et al. Long-term follow-up of topical 5-aminolaevulinic acid photodynamic therapy diode laser single session for non-melanoma skin cancer. Photodiagn Photodyn Ther. 2009;6:207–13.

    Article  CAS  Google Scholar 

  103. Savoia P, Deboli T, Previgliano A, Broganelli P. Usefulness of photodynamic therapy as a possible therapeutic alternative in the treatment of basal cell carcinoma. Int J Mol Sci. 2015;16:23300–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gerritsen M, Smits T, Kleinpenning M, van de Kerkhof P, van Erp P. Pretreatment to enhance protophorphyrin IX accumulation in photodynamic therapy. Dermatology. 2009;218:193–202.

    Article  CAS  PubMed  Google Scholar 

  105. Thissen M, Schroeter C, Neumann H. Photodynamic therapy with delta-aminolaevulinic acid for nodular basal cell carcinomas using a prior debulking technique. Br J Dermatol. 2000;142:338–9.

    Article  CAS  PubMed  Google Scholar 

  106. Clementoni M, B-Roscher M, Munavalli G. Photodynamic photo- rejuvenation of the face with a combination of microneedling red light and broadband pulsed light. Lasers Surg Med. 2010;42:150–9.

    Article  PubMed  Google Scholar 

  107. Braathen L, Paredes B, Saksela O, et al. Short incubation with methyl aminolevulinate for photodynamic therapy of actinic keratoses. J Eur Acad Dermatol Venereol. 2009;23:550–5.

    Article  CAS  PubMed  Google Scholar 

  108. Spencer J, Freeman S. Microneedling prior to levulan PDT for the treatment of actinic keratoses: a split-face, blinded trial. J Drugs Dermatol. 2016;15:1072–4.

    CAS  PubMed  Google Scholar 

  109. Shokrollahi K, Javed M, Aeuyung K, et al. Combined carbon dioxide laser with photodynamic therapy for nodular and superficial basal cell carcinoma. Ann Plast Surg. 2014;73:552–8.

    Article  CAS  PubMed  Google Scholar 

  110. Haak C, Togsverd-Bo K, Thaysen-Petersen D, et al. Fractional laser-mediated photodynamic therapy of high-risk basal cell carcinomas – a randomized clinical trial. Br J Dermatol. 2015;172:215–22.

    Article  CAS  PubMed  Google Scholar 

  111. Smucler R, Vlk M. Combination of Er:YAG laser and photodynamic therapy in the treatment of nodular basal cell carcinoma. Lasers Surg Med. 2008;40:153–8.

    Article  PubMed  Google Scholar 

  112. Choi S, Kim K, Song K. Er:YAG ablative fractional laser-primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12-month follow-up results of a randomized, prospective, comparative trial. J Eur Acad Dermatol Venereol. 2016;30:783–8.

    Article  CAS  PubMed  Google Scholar 

  113. Rodríguez-Prieto M, González-Sixto B, Pérez-Bustillo A, et al. Photodynamic therapy with intralesional photosensitizer and laser beam application: an alternative treatment for nodular basal cell carcinoma. J Am Acad Dermatol. 2012;67:e134–6.

    Article  PubMed  Google Scholar 

  114. Suárez Valladares M, Pérez Paredes M, González Sixto B. Long-term follow-up of patients with basal cell carcinoma after successful treatment with intralesional photodynamic therapy. J Am Acad Dermatol. 2016;75:e247.

    Article  PubMed  Google Scholar 

  115. Suárez Valladares M, Vega J, Rodríguez Prieto M. Comparison of treatment of basal cell carcinoma between surgery and intralesional photodynamic therapy: a cross-sectional study. Photodiagn Photodyn Ther. 2018;21:30467–2.

    Article  Google Scholar 

  116. Lu Y, Wang Y, Yang Y, et al. Efficacy of topical ALA-PDT combined with excision in the treatment of skin malignant tumor. Photodiagn Photodyn Ther. 2014;11:122–6.

    Article  CAS  Google Scholar 

  117. Lee P, Kloser A. Current methods for photodynamic therapy in the US: comparison of MAL/PDT and ALA/PDT. J Drug Dermatol. 2013;12:925–30.

    CAS  Google Scholar 

  118. Clark C, Bryden A, Dawe R, et al. Topical 5-aminolaevulinic acid photodynamic therapy for cutaneous lesions: outcome and comparison of light sources. Photodermatol Photoimmunol Photomed. 2003;19:134–41.

    Article  CAS  PubMed  Google Scholar 

  119. Cordey H, Ibbotson S. Allergic contact dermatitis to topical pro-drugs used in photodynamic therapy. Photodermatol Photoimmunol Photomed. 2016;32:320–2.

    Article  CAS  PubMed  Google Scholar 

  120. Fink C, Uhlmann L, Enk A, Gholam P. Pain management in photodynamic therapy using a nitrous/oxygen mixture: a prospective, within-patient, controlled clinical trial. J Eur Acad Dermatol Venereol. 2017;31:70–4.

    Article  CAS  PubMed  Google Scholar 

  121. Kasche A, Luderschmidt S, Ring S, Hein R. Photodynamic therapy induces less pain in patient treated with methyl aminolevulinate compared to aminolevulinic acid. J Drugs Dermatol. 2006;5:353–6.

    CAS  PubMed  Google Scholar 

  122. Wiegell S, Stender I-M, Na R, Wulf H. Pain associated with photodynamic therapy using 5-aminolevulinic acid or 5-aminolevulinic acid methylester on tape-stripped normal skin. Arch Dermatol. 2003;139:1173–7.

    Article  CAS  PubMed  Google Scholar 

  123. Kessels J, Nelemans P, Mosterd K, Kelleners-Smeets N, Krekels G, Ostertag J. Laser-mediated photodynamic therapy: an alternative treatment for actinic keratosis? Acta Derm Venereol. 2016;96:351–4.

    Article  CAS  PubMed  Google Scholar 

  124. Wiegell S, Haedersal M, Wulf H. Cold water and pauses in illumination reduces pain during photodynamic therapy: a randomized clinical study. Acta Derm Venereol. 2009;89:145–9.

    PubMed  Google Scholar 

  125. Skiveren J, Haedersal M, Philipsem P, Wiegel S, Wulf H. Morphine gel 0.3% does not relieve pain during topical photodynamic therapy: a randomized, double-blind, placebo-controlled study. Acta Derm Venereol. 2006;86:409–11.

    Article  PubMed  Google Scholar 

  126. Foley P, Freeman M, Menter A, et al. Photodynamic therapy with methyl aminolevulinate for primary nodular basal cell carcinoma: results of two randomized studies. Int J Dermatol. 2009;48:1236–45.

    Article  CAS  PubMed  Google Scholar 

  127. Szeimies R, Ibbotson S, Murrell D, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8–20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol. 2008;22:1302–11.

    Article  CAS  PubMed  Google Scholar 

  128. Rhodes L, de Rie M, Leifsdottir R, et al. Five-year follow-up of a randomized, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Arch Dermatol. 2007;143:1131–6.

    Article  CAS  PubMed  Google Scholar 

  129. Mosterd K, Thissen M, Nelemans P, et al. Fractionated 5-aminolaevulinic acid-photodynamic therapy vs. surgical excision in the treatment of nodular basal cell carcinoma: results of a randomized controlled trial. Br J Dermatol. 2008;159:864–70.

    Article  CAS  PubMed  Google Scholar 

  130. Berroeta L, Clark C, Dawe R, Ibbotson S, Fleming C. A randomized study of minimal curettage followed by topical photodynamic therapy compared with surgical excision for low-risk nodular basal cell carcinoma. Br J Dermatol. 2007;157:401–3.

    Article  CAS  PubMed  Google Scholar 

  131. Roozeboom M, Aardoom M, Nelemans P, et al. Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up. J Am Acad Dermatol. 2013;69:280–7.

    Article  CAS  PubMed  Google Scholar 

  132. Zou Y, Zhao Y, Yu J, et al. Photodynamic therapy versus surgical excision to basal cell carcinoma: meta-analysis. J Cosmet Dermatol. 2016;15:374–82.

    Article  PubMed  Google Scholar 

  133. Wang H, Xu Y, Shi J, et al. Photodynamic therapy in the treatment of basal cell carcinoma: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed. 2015;31:44–53.

    Article  PubMed  CAS  Google Scholar 

  134. Wang I, Bendsoe N, Klinteberg C, et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase III clinical trial. Br J Dermatol. 2001;144:832–40.

    Article  CAS  PubMed  Google Scholar 

  135. Basset-Seguin N, Ibbotson S, Emtestam L, et al. Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur J Dermatol. 2008;18:547–53.

    CAS  PubMed  Google Scholar 

  136. Zloty D, Guenther LC, Apijaszko M, et al. Non-melanoma skin cancer in Canada Chapter 4: management of basal cell carcinoma. J Cutan Med Surg. 2015;19:239–48.

    Article  CAS  PubMed  Google Scholar 

  137. Arits A, Spoorenberg E, Mosterd K, Nelemans P, Kelleners-Smeets N, Essers B. Cost-effectiveness of topical imiquimod and fluorouracil vs. photodynamic therapy for treatment of superficial basal-cell carcinoma. Br J Dermatol. 2014;171:1501–7.

    Article  CAS  PubMed  Google Scholar 

  138. Roozeboom M, Artis A, Mosterd K, et al. Three-year follow-up results of photodynamic therapy vs. imiquimod vs. fluorouracil for treatment of superficial basal cell carcinoma: a single-blind, noninferiority, randomized controlled trial. J Invest Dermatol. 2016;136:1568–74.

    Article  CAS  PubMed  Google Scholar 

  139. Jansen M, Mosterd K, Arits A, et al. Five-year results of a randomized controlled trial comparing effectiveness of photodynamic therapy, topical imiquimod, and topical 5-fluorouracial in patients with superficial basal cell carcinoma. J Invest Dermatol. 2018;138:527–33.

    Article  CAS  PubMed  Google Scholar 

  140. Roozeboom M, Nelemans P, Mosterd K, et al. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: a subgroup analysis within a noninferiority randomized controlled trial. Br J Dermatol. 2015;172:739–45.

    Article  CAS  PubMed  Google Scholar 

  141. de Haas E, Kruijt B, Sterenborg H, et al. Fractionated illumination significantly improves the response of superficial basal cell carcinoma to aminolevulinic acid photodynamic therapy. J Invest Dermatol. 2006;126:2679–86.

    Article  PubMed  CAS  Google Scholar 

  142. de Vijlder H, Sterenborg H, Neumann H, et al. Light fractionation significantly improves the response of superficial basal cell carcinoma to aminolaevulinic acid photodynamic therapy: five-year follow-up of a randomized, prospective trial. Acta Derm Venereol. 2012;92:641–7.

    Article  PubMed  CAS  Google Scholar 

  143. Kuijpers D, Thissen M, Thissen C, Neumann M. Similar effectiveness of methyl aminolevulinate and 5-aminolevulinate in topical photodynamic therapy for nodular basal cell carcinoma. J Drugs Dermatol. 2006;5:642–5.

    PubMed  Google Scholar 

  144. Kessels J, Kreukels H, Nelemans P, et al. Treatment of superficial basal cell carcinoma by topical photodynamic therapy with fractionated 5-aminolevulinic acid 20% versus two stage topical methylaminolevulinic acid: results of a randomized controlled trial. Br J Dermatol. 2018;178:1056–63.

    Article  CAS  PubMed  Google Scholar 

  145. Morton C, Dominicus R, Dirschka T, et al. A randomized, multi-national, non-inferiority, phase III trial to evaluate the safety and efficacy of BF-200 ALA gel versus MAL cream in the treatment of non-aggressive basal cell carcinoma with photodynamic therapy (PDT). Br J Dermatol. 2018;179:309–19.

    CAS  PubMed  Google Scholar 

  146. Babilas P, Travnik A, Werner M, et al. Split-face-study using two different light sources for topical PDT of actinic keratoses:non-inferiority of the LED system. J Dtsch Dermatol Ges. 2008;6:25–32.

    Article  PubMed  Google Scholar 

  147. Hambly R, Mansoor N, Quinlan C, et al. Factors predicting pain and effect of oral analgesia in topical photodynamic therapy. Photodermatol Photoimmunol Photomed. 2017;33:176–9.

    Article  PubMed  Google Scholar 

  148. Ghiehl K, Kriz M, Grahovac M, et al. A controlled trial of photodynamic therapy of actinic keratosis comparing different red light sources. Eur J Dermatol. 2014;24:335–41.

    Google Scholar 

  149. von Felbert V, Hoffmann G, Hoff-Lesch S, et al. Hotodynamic therapy of multiple actinic keratoses: reduced pain through use of visible light plus water-filtered infrared A compared with light from light-emitting diodes. Br J Dermatol. 2010;163:607–15.

    Article  Google Scholar 

  150. Clark C, Bryden A, Dawe R, et al. Opical 5- aminolaevulinic acid photodynamic therapy for cutaneous lesions: outcome and comparison of light sources. Photodermatol Photoimmunol Photomed. 2003;19:134–41.

    Article  CAS  PubMed  Google Scholar 

  151. Fernandez-Guarino M, Harto A, Jaen P. Pulsed dye laser does not seem as effective as red light in basal cell carcinoma mal-pdt: a small pilot study. J Skin Cancer. 2012;2012:396481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Carija A, Puizina-Iviv N, Vukovic D, et al. Single treatment of low-risk basal cell carcinomas with pulsed dye laser-mediated photodynamic therapy (PDL-PDT) compared with photodynamic therapy (PDT): a controlled, investigator-blinded, intra-individual prospective study. Photodiagn Photodyn Ther. 2016;16:60–5.

    Article  Google Scholar 

  153. Osiecka B, Jurczyszyn K, Ziółkowski P. The application of Levulan-based photodynamic therapy with imiquimod in the treatment of recurrent basal cell carcinoma. Med Sci Monit. 2012;18:5–9.

    Article  Google Scholar 

  154. Lippert J, Smuclear R, Vlk M. Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl t-aminolevulinate. Dermatol Surg. 2013;39:1202–8.

    Article  CAS  PubMed  Google Scholar 

  155. Nicolodelli G, Angarita D, Inada N, Tirapelli L, Bagnato V. Effect of photodynamic therapy on the skin using the ultrashort laser ablation. J Biophotonics. 2014;7:631–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirunya Silapunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kash, N., Silapunt, S. (2020). Photodynamic Therapy for the Treatment of Basal Cell Carcinoma. In: Migden, M., Chen, L., Silapunt, S. (eds) Basal Cell Carcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-26887-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26887-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26886-2

  • Online ISBN: 978-3-030-26887-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics