Skip to main content

Moduli Spaces of Sheaves on Surfaces: Hecke Correspondences and Representation Theory

  • Chapter
  • First Online:
  • 1135 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2248))

Abstract

In modern terms, enumerative geometry is the study of moduli spaces: instead of counting various geometric objects, one describes the set of such objects, which if lucky enough to enjoy good geometric properties is called a moduli space. For example, the moduli space of linear subspaces of \({\mathbb {A}}^n\) is the Grassmannian variety, which is a classical object in representation theory. Its cohomology and intersection theory (as well as those of its more complicated cousins, the flag varieties) have long been studied in connection with the Lie algebras \(\mathfrak {sl}_n\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Baranovsky, Moduli of sheaves on surfaces and action of the oscillator algebra. J. Differ. Geom. 55(2), 193–227 (2000)

    Article  MathSciNet  Google Scholar 

  2. I. Burban, O. Schiffmann, On the hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012)

    Article  MathSciNet  Google Scholar 

  3. G. Ellingsrud, S.A. Strømme, On the homology of the Hilbert scheme of points in the plane. Invent. Math. 87, 343–352 (1987)

    Article  MathSciNet  Google Scholar 

  4. B. Feigin, A. Odesskii, Quantized moduli spaces of the bundles on the elliptic curve and their applications, in Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Science Series, II: Mathematics, Physics and Chemistry, vol. 35 (Kluwer Academic Publishers, Dordrecht, 2001), pp. 123–137

    Google Scholar 

  5. B. Feigin, A. Tsymbaliuk, Equivariant K-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011)

    Article  MathSciNet  Google Scholar 

  6. V. Ginzburg, E. Vasserot, Langlands reciprocity for affine quantum groups of typeA n. Int. Math. Res. Notices 3, 67–85 (1993)

    Article  Google Scholar 

  7. E. Gorsky, A. Neguţ, J. Rasmussen, Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology. arXiv:1608.07308

    Google Scholar 

  8. L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286, 193–207 (1990)

    Article  MathSciNet  Google Scholar 

  9. I. Grojnowski, Instantons and affine algebras I: The Hilbert scheme and vertex operators. Math. Res. Lett. 3(2), 1995

    Article  MathSciNet  Google Scholar 

  10. R. Hartshorne, in Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977), 978-0-387-90244-9

    Book  Google Scholar 

  11. D. Huybrechts, M. Lehn, in The Geometry of Moduli Spaces of Sheaves, 2nd edn. (Cambridge University Press, Cambridge 2010). ISBN 978-0-521-13420-0

    Book  Google Scholar 

  12. J. Lipman, A. Neeman, Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor. Illinois J. Math. 51(1), 209–236 (2007)

    Article  MathSciNet  Google Scholar 

  13. J. Lurie, in Derived Algebraic Geometry XII: Proper Morphisms, Completions, and the Grothendieck Existence Theorem. http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf

  14. A. Minets, in Cohomological Hall Algebras for Higgs Torsion Sheaves, Moduli of Triples and Sheaves on Surfaces. arXiv:1801.01429

    Google Scholar 

  15. D. Mumford, J. Fogarty, F. Kirwan, in Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vo. 34, 3rd edn. (Springer, Berlin, 1994)

    Google Scholar 

  16. H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. Math. (second series) 145(2), 379–388 (1997)

    Article  MathSciNet  Google Scholar 

  17. H. Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145–238 (2001)

    Article  MathSciNet  Google Scholar 

  18. A. Neguţ, in Shuffle Algebras Associated to Surfaces. arXiv:1703.02027

    Google Scholar 

  19. A. Neguţ, in W-Algebras Associated to Surfaces. arXiv:1710.03217

    Google Scholar 

  20. A. Neguţ, in Hecke Correspondences for Smooth Moduli Spaces of Sheaves. arXiv:1804.03645

    Google Scholar 

  21. A. Neguţ, The shuffle algebra revisited. Int. Math. Res. Not. 2014(22), 6242–6275 (2014)

    Article  MathSciNet  Google Scholar 

  22. A. Neguţ, Moduli of flags of sheaves and their K-theory. Algebr. Geom. 2(1), 19–43 (2015)

    Article  MathSciNet  Google Scholar 

  23. A. Oblomkov, L. Rozansky, Knot homology and sheaves on the Hilbert scheme of points on the plane. L. Sel. Math. New Ser. 24, 2351 (2018)

    Article  MathSciNet  Google Scholar 

  24. F. Sala, O. Schiffmann, in Cohomological Hall Algebra of Higgs Sheaves on a Curve. arXiv:1801.03482

    Google Scholar 

  25. O. Schiffmann, Drinfeld realization of the elliptic Hall algebra. J. Algebraic Comb. 35(2), 237–262 (2012)

    Article  MathSciNet  Google Scholar 

  26. O. Schiffmann, E. Vasserot, The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of \({\mathbb {A}}^2\). Duke Math. J. 162(2), 279–366 (2013)

    Google Scholar 

  27. B. Toën, in Proper Local Complete Intersection Morphisms Preserve Perfect Complexes. arXiv:1210.2827

    Google Scholar 

  28. M. Varagnolo, E. Vasserot. On the K-theory of the cyclic quiver variety. Int. Math. Res. Not. 1999(18), 1005–1028 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the organizers of the CIME School on Geometric Representation Theory and Gauge Theory: Ugo Bruzzo, Antonella Grassi and Francesco Sala, for making this wonderful event possible. Special thanks are due to Davesh Maulik and Francesco Sala for all their support along the way. I would like to thank the referee for their wonderful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Neguţ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neguţ, A. (2019). Moduli Spaces of Sheaves on Surfaces: Hecke Correspondences and Representation Theory. In: Bruzzo, U., Grassi, A., Sala, F. (eds) Geometric Representation Theory and Gauge Theory. Lecture Notes in Mathematics(), vol 2248. Springer, Cham. https://doi.org/10.1007/978-3-030-26856-5_2

Download citation

Publish with us

Policies and ethics