Skip to main content

Parametric Standard Bases and Their Applications

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Included in the following conference series:

Abstract

In this paper, by stating a local variant of stability criteria due to Kalkbrener [25] and based on the Kapur et al. algorithm [30] for computing comprehensive Gröbner systems, we present an algorithm for the computation of comprehensive standard systems. Although our algorithm is a straightforward extension of the mentioned algorithm, however the effectiveness of our approach can be seen in its applications. To this end, we study some applications of parametric standard bases in catastrophe and singularity theories as well as in automated geometric theorem discovery. In particular, in the last application, it is demonstrated that for a given geometric theorem (which is not always true), our algorithm is able to construct all possible conditions under which the geometric conclusion remains locally true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahloul, R.: Parametric standard basis, degree bound and local Hilbert-Samuel function. ArXiv:1004.0908, pp. 1–24 (2010)

  2. Becker, T.: Standard bases in power series rings: uniqueness and superfluous critical pairs. J. Symb. Comput. 15(3), 251–265 (1993)

    Article  MathSciNet  Google Scholar 

  3. Berkesch, C., Schreyer, F.-O.: Syzygies, finite length modules, and random curves. In: Commutative Algebra and Noncommutative Algebraic Geometry. Expository articles, vol. I, pp. 25–52. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  4. Botana, F., Montes, A., Recio, T.: An algorithm for automatic discovery of algebraic loci. In: Proceeding of the ADG, pp. 53–59 (2012)

    Google Scholar 

  5. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 3–21. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_52

    Chapter  Google Scholar 

  6. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 3–4 (2006). Translation from the German, 475–511

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Li, P., Lin, L., Wang, D.: Proving geometric theorems by partitioned-Parametric Gröbner bases. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 34–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11615798_3

    Chapter  Google Scholar 

  8. Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht (1988)

    MATH  Google Scholar 

  9. Chou, S.-C., Schelter, W.F.: Proving geometry theorems with rewrite rules. J. Autom. Reasoning 2, 253–273 (1986)

    Article  Google Scholar 

  10. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Caviness, B.F., Johnson, J.R. (eds.) GI-Fachtagung 1975. LNCS, pp. 85–121. Springer, Wien: (1998). https://doi.org/10.1007/978-3-7091-9459-1_4

    Chapter  MATH  Google Scholar 

  11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-35651-8

    Book  MATH  Google Scholar 

  12. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New York (2005). https://doi.org/10.1007/978-1-4757-6911-1

    Book  MATH  Google Scholar 

  13. Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. J. Autom. Reasoning 43(2), 203–236 (2009)

    Article  MathSciNet  Google Scholar 

  14. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-1 – a computer algebra system for polynomial computations (2018). http://www.singular.uni-kl.de

  15. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  16. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, Lille, France, July 07–10, 2002, pp. 75–83. ACM Press, New York (2002)

    Google Scholar 

  17. Gazor, M., Kazemi, M.: Singularity: a maple library for local zeros of scalar smooth maps (2016)

    Google Scholar 

  18. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988)

    Article  MathSciNet  Google Scholar 

  19. Gelernter, H., Hanson, J. R., and Loveland, D. W.: Empirical explorations of the geometry-theorem proving machine. In: Proceeding of the West Joint Computer Conference (1960), pp. 143–147

    Google Scholar 

  20. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and groups in bifurcation theory. vols. I, II. Springer-Verlag, New York, 1985, 1988

    Google Scholar 

  21. Gordan, P.: Les invariants des formes binaires. J. Math. 6(5), 141–156 (1900)

    MATH  Google Scholar 

  22. Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171–198 (1972)

    Article  MathSciNet  Google Scholar 

  23. Guglielmi, A.V.: Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory. Physics-Uspekhi 58(4), 384–397 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79(2), 109–203, 205–326 (1964)

    Article  MathSciNet  Google Scholar 

  25. Kalkbrener, M.: On the stability of Gröbner bases under specializations. J. Symb. Comput. 24(1), 51–58 (1997)

    Article  MathSciNet  Google Scholar 

  26. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 2, 399–408 (1986)

    Article  MathSciNet  Google Scholar 

  27. Kapur, D.: An approach for solving systems of parametric polynomial equations. In: Sarawat, V., Van Hentenryck, P. (eds.) Principles and Practice of Constraint Programming, pp. 217–224. MIT Press, Cambridge (1995)

    Google Scholar 

  28. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, July 25–28, 2010, pp. 29–36. Association for Computing Machinery (ACM), New York (2010)

    Google Scholar 

  29. Kapur, D., Sun, Y., and Wang, D.: Computing comprehensive Gröbner systems and comprehensive Gröbner bases simultaneously. In: Proceedings of the 36th international symposium on symbolic and algebraic computation, ISSAC 2011, San Jose, CA, USA, June 7–11, 2011, pp. 193–200. Association for Computing Machinery (ACM), New York (2011)

    Google Scholar 

  30. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system. J. Symb. Comput. 49, 27–44 (2013)

    Article  Google Scholar 

  31. Kapur, D., Sun, Y., Wang, D.: An efficient method for computing comprehensive Gröbner bases. J. Symb. Comput. 52, 124–142 (2013)

    Article  Google Scholar 

  32. Kutzler, B., Stifter, S.: On the application of Buchberger’s algorithm to automated geometry theorem proving. J. Symb. Comput. 2, 389–397 (1986)

    Article  MathSciNet  Google Scholar 

  33. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9_99

    Chapter  Google Scholar 

  34. Manubens, M., Montes, A.: Improving the DISPGB algorithm using the discriminant ideal. J. Symb. Comput. 41(11), 1245–1263 (2006)

    Article  MathSciNet  Google Scholar 

  35. Manubens, M., Montes, A.: Minimal canonical comprehensive Gröbner systems. J. Symb. Comput. 44(5), 463–478 (2009)

    Article  Google Scholar 

  36. Marais, M.S., Steenpaß, A.: The classification of real singularities using Singular. I: Splitting lemma and simple singularities. J. Symb. Comput. 68, 61–71 (2015)

    Article  MathSciNet  Google Scholar 

  37. Milnor, J.W.: Singular Points of Complex Hypersurfaces, vol. 61. Princeton University Press, Princeton (1968)

    MATH  Google Scholar 

  38. Möller, H.M.: On the construction of Gröbner bases using syzygies. J. Symb. Comput. 6(2–3), 345–359 (1988)

    Article  Google Scholar 

  39. Möller, H. M., Mora, T., Traverso, C.: Gröbner bases computation using syzygies, pp. 320–328. In: Proceedings of ISSAC 1992. ACM Press, Baltimore (1992)

    Google Scholar 

  40. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput. 33(2), 183–208 (2002)

    Article  MathSciNet  Google Scholar 

  41. Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal canonical comprehensive Gröbner systems. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 113–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77356-6_8

    Chapter  MATH  Google Scholar 

  42. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45(12), 1391–1425 (2010)

    Article  Google Scholar 

  43. Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60(2), 365–374 (1954)

    Article  MathSciNet  Google Scholar 

  44. Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comput. 13(4), 353–394 (1992)

    Article  MathSciNet  Google Scholar 

  45. Stewart, I.: Applications of catastrophe theory to the physical sciences. Phys. D 2(2), 245–305 (1981)

    Article  MathSciNet  Google Scholar 

  46. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ISSAC 2006, Genova, Italy, July 9–12, 2006, pp. 326–331. ACM Press, New York (2006)

    Google Scholar 

  47. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 24–84. Springer, Wien (1998). https://doi.org/10.1007/978-3-7091-9459-1_3

    Chapter  Google Scholar 

  48. Thom, R.: Structural stability and morphogenesis: an outline of a general theory of models. Transl. from the French edition, as updated by the author Fowler, D.H. (ed.) Reprint from the 2nd Engl. ed. Addison-Wesley Publishing Company Inc, Redwood City (1989)

    Google Scholar 

  49. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)

    Article  MathSciNet  Google Scholar 

  50. Weispfenning, V.: Canonical comprehensive Gröbner bases. J. Symb. Comput. 36(3–4), 669–683 (2003)

    Article  Google Scholar 

  51. Winkler, F.: Gröbner bases in geometry theorem proving and simplest degeneracy conditions. Math. Pannonica 1(1), 15–32 (1990)

    MathSciNet  MATH  Google Scholar 

  52. Zhou, J., Wang, D., Sun, Y.: Automated reducible geometric theorem proving and discovery by Gröbner basis method. J. Autom. Reasoning 59(3), 331–344 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hashemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashemi, A., Kazemi, M. (2019). Parametric Standard Bases and Their Applications. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics