Skip to main content

Systemic Risk in Networks

  • Chapter
  • First Online:
Network Science

Abstract

Systemic risk, i.e., the risk that a local shock propagates throughout a given system due to contagion effects, is of great importance in many fields of our lives. In this summary article, we show how asymptotic methods for random graphs can be used to understand and quantify systemic risk in networks. We define a notion of resilient networks and present criteria that allow us to classify networks as resilient or non-resilient. We further examine the question how networks can be strengthened to ensure resilience. In particular, for financial systems we address the question of sufficient capital requirements. We present the results in random graph models of increasing complexity and relate them to classical results about the phase transition in the Erdös-Rényi model. We illustrate the results by a small simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alon, N. & Spencer, J. H. (2016), The Probabilistic Method, 4th edn, Wiley Publishing.

    Google Scholar 

  • Amini, H. & Fountoulakis, N. (2014), ‘Bootstrap percolation in power-law random graphs’, Journal of Statistical Physics155(1), 72–92. http://dx.doi.org/10.1007/s10955-014-0946-6

    Google Scholar 

  • Amini, H., Filipović, D. & Minca, A. (2015), ‘Systemic risk and central clearing counterparty design’, Swiss Finance Institute Research Paper pp. 13–34.

    Google Scholar 

  • Amini, H., Fountoulakis, N. & Panagiotou, K. (2014), ‘Bootstrap percolation in inhomogeneous random graphs’, arXiv:1402.2815

    Google Scholar 

  • Amini, H., Cont, R. & Minca, A. (2016), ‘Resilience to contagion in financial networks’, Mathematical Finance26(2), 329–365.

    Article  MathSciNet  Google Scholar 

  • Armenti, Y., Crépey, S., Drapeau, S. & Papapantoleon, A. (2018), ‘Multivariate shortfall risk allocation and systemic risk’, SIAM Journal on Financial Mathematics9(1), 90–126.

    Article  MathSciNet  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J. & Heath, D. (1999), ‘Coherent measures of risk’, Mathematical Finance9(3), 203–228.

    Article  MathSciNet  Google Scholar 

  • Biagini, F., Fouque, J.-P., Fritelli, M. & Meyer-Brandis, T. (2019+), ‘A unified approach to systemic risk measures via acceptance sets’, Mathematical Finance.

    Google Scholar 

  • Bollobás, B. (2001), Random Graphs, Cambridge Studies in Advanced Mathematics, 2nd edn, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Chalupa, J., Leath, P. L. & Reich, G. R. (1979), ‘Bootstrap percolation on a Bethe lattice’, Journal of Physics C: Solid State Physics12(1), L31–L35.

    Article  Google Scholar 

  • Chen, C., Iyengar, G. & Moallemi, C. (2013), ‘An axiomatic approach to systemic risk’, Management Science59(6), 1373–1388.

    Article  Google Scholar 

  • Chong, C. & Klüppelberg, C. (2018), ‘Contagion in financial systems: A Bayesian network approach’, SIAM Journal on Financial Mathematics9(1), 28–53.

    Article  MathSciNet  Google Scholar 

  • Chung, F. & Lu, L. (2002), ‘Connected components in random graphs with given expected degree sequences’, Annals of Combinatorics6(2), 125–145.

    Article  MathSciNet  Google Scholar 

  • Chung, F. & Lu, L. (2003), ‘The average distances in random graphs with given expected degrees’, Internet Mathematics1, 91–114.

    Article  MathSciNet  Google Scholar 

  • Detering, N., Meyer-Brandis, T. & Panagiotou, K. (2015), ‘Bootstrap percolation in directed and inhomogeneous random graphs’, Electronic Journal of Combinatorics, 26(2), 2019, arXiv:1511.07993.

  • Detering, N., Meyer-Brandis, T., Panagiotou, K. & Ritter, D. (2016), ‘Managing default contagion in inhomogeneous financial networks’, SIAM Journal on Financial Mathematics, 10(2), 2019, arXiv:1610.09542.

  • Eisenberg, L. & Noe, T. H. (2001), ‘Systemic risk in financial systems’, Management Science47(2), 236–249.

    Article  Google Scholar 

  • Erdős, P. & Rényi, A. (1960), On the evolution of random graphs, in ‘Publication of the Mathematical Institute of the Hungarian Academy of Sciences’, pp. 17–61.

    Google Scholar 

  • Feinstein, Z., Rudloff, B. & Weber, S. (2017), ‘Measures of systemic risk’, SIAM Journal on Financial Mathematics8(1), 672–708.

    Article  MathSciNet  Google Scholar 

  • Fouque, J.-P. & Langsam, J. A., eds (2013), Handbook on systemic risk, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Gai, P. & Kapadia, S. (2010), ‘Contagion in Financial Networks’, Proceedings of the Royal Society A466, 2401–2423.

    Article  MathSciNet  Google Scholar 

  • Gandy, A. & Veraart, L. A. M. (2017), ‘A Bayesian methodology for systemic risk assessment in financial networks’, Management Science63(12), 4428–4446.

    Article  Google Scholar 

  • Gilbert, E. N. (1959), ‘Random Graphs’, Ann. Math. Statist.30(4), 1141–1144. https://doi.org/10.1214/aoms/1177706098

  • Hoffmann, H., Meyer-Brandis, T. & Svindland, G. (2016), ‘Risk-consistent conditional systemic risk measures’, Stochastic Processes and their Applications126(7), 2014–2037.

    Article  MathSciNet  Google Scholar 

  • Hoffmann, H., Meyer-Brandis, T. & Svindland, G. (2018), ‘Strongly consistent multivariate conditional risk measures’, Mathematics and Financial Economics12(3), 413–444.

    Article  MathSciNet  Google Scholar 

  • Hofstad, R. v. d. (2016), Random Graphs and Complex Networks, Vol. 1 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

    Google Scholar 

  • Hurd, T. R. (2016), Contagion! Systemic Risk in Financial Networks, Springer.

    Google Scholar 

  • Janson, S., Łuczak, T. & Rucinski, A. (2011), Random Graphs, Wiley.

    Google Scholar 

  • Janson, S., Łuczak, T., Turova, T. & Vallier, T. (2012), ‘Bootstrap percolation on the random graph \(G_{n,p}\)’, Ann. Appl. Probab.22(5), 1989–2047. http://dx.doi.org/10.1214/11-AAP822

  • Kromer, E., Overbeck, L. & Zilch, K. (2016), ‘Systemic risk measures on general measurable spaces’, Mathematical Methods of Operations Research84(2), 323–357.

    Article  MathSciNet  Google Scholar 

  • Kusnetsov, M. & Veraart, L. A. M. (2016), ‘Interbank Clearing in Financial Networks with Multiple Maturities’, Preprint.

    Google Scholar 

  • Weber, S. & Weske, S. (2017), ‘The joint impact of bankruptcy costs, cross-holdings and fire sales on systemic risk in financial networks’, Probability, Uncertainty and Quantitative Risk2(9), 1–38.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Detering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Detering, N., Meyer-Brandis, T., Panagiotou, K., Ritter, D. (2019). Systemic Risk in Networks. In: Biagini, F., Kauermann, G., Meyer-Brandis, T. (eds) Network Science. Springer, Cham. https://doi.org/10.1007/978-3-030-26814-5_5

Download citation

Publish with us

Policies and ethics